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Chapter 2

Passband Systems and Analysis

Baseband modulation uses basis functions that have most of their energy at low frequencies. The
majority of modulation methods in Chapter 1 are baseband, although a few (like PSK and QAM) use
basis functions that have energy centered at or near a carrier or center frequency ωc = 2πfc. These
latter passband modulation methods are useful in many applications where transmission occurs over a
limited narrow bandwidth, typically centered at or near the carrier frequency of the passband modulation.
Digital television transmission on Channel 2 in the US has carrier frequency 52 MHz and non-negligible
energy only from 50 to 56 MHz. Digital cellular phones use carrier frequencies in the 900 MHz (and
1800 and 1900 MHz) bands, but have nonzero energy over a narrow band that is typically a few 100 kHz
(GSM approximate) to 1.1MHz (wideband “CDMA”)) wide.1 Digital Satellite transmission uses QAM
and carriers in the 12 and 17 GHz bands with transponder bandwidths of about 26 MHz. There are
numerous other examples. Signal energy is carried through these narrow “passbands” and consequently
subject to filtering. This chapter teaches a common method of analyzing such systems without explicit
need for the carrier frequency or its inclusion in the basis functions or in the channel transfer function.
This theory of passband system analysis will allow a fundamental study of the structure of the
important suboptimal receivers in Chapter 3 for both baseband and passband modulation.

Passband system analysis is particularly appropriate for quadrature modulation (for instance QAM)
signals. It is important to note, and also helps to reinforce the concepts to be introduced, that whether
a system is analyzed by using the methods in this chapter or by using the more general methods of
Chapter 1, the result should be the same. Section 2.1 introduces the concept of baseband equivalent
modeling and shows how to convert from a real signals in a passband channel to complex signals in
a baseband equivalent. Section 2.2 then follows with specific consideration of the baseband equivalent
filtered AWGN channel that is often used by modem designers, including a detailed discussion of scaling
factors often tacitly presumed throughout the industry. Section 2.3 reviews the generation of baseband
equivalents and provides an example calculation of the baseband equivalent, which is a reference from
which the user may be able to duplicate the procedure in general. Section 2.4 relates complex-signal
analysis to the VSB, CAP and OQAM implementations of passband modulation mentioned in Section
1.6.

Especially in passband transmission-system design, the channel is often band-limited so that the
AWGN model of Chapter 1 does not directly apply to either the original passband channel or its complex
baseband equivalent. Instead, the AWGN model of Chapter 1 is modified to include a filter before the
added noise as in Figure 2.1. The filter h(t) represents the band-limiting effect of the physical channel,
which may be caused by filters in the transmission path that create the passband channel or by natural
finite-bandwidth constraints of transmission lines and wireless multiple-path transmission. The filter
h(t) acts on the transmitted modulated signal x(t) and introduces some level of distortion. Preferably,
x(t) ∗ h(t) ≈ x(t), but the designer may not be able to ensure small distortion. High frequencies are
inevitably attenuated in all channels, but many channels also attenuate low frequencies. Furthermore,
different frequencies may have different levels of attenuation in real channels. Whether modeling filters

1Recent spread spectrum digital wireless has a yet wider bandwidth of about 1.2 MHz wide (CDMA), with carrier
frequencies often near 2 Ghz.
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Figure 2.1: The filtered AWGN.

or actual physical effects, an imperfect channel impulse response h(t) will cause an affect the performance
of the transmission system.

Chapter 1, Section 7, studied the alterations necessary with such a filtered AWGN for a single “one-
shot” transmission. A more general treatment of the widely applying situation modeled by Figure 2.1
for multiple successive message transmission is necessary and appears in Chapters 3, 4 and 5. To prepare
for these Chapters, the designer needs understanding of the complex baseband models of this Chapter 2.
These models will apply to either the baseband case, where trivially all imaginary components are zero,
and to the passband case where all imaginary components are not necessarily zero, allowing a single
theory of receiver processing of complex signals in the remainder of this text.
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Figure 2.2: Passband signal amplitude.

2.1 Passband Representations and Terminology

A passband signal has energy concentrated in the vicinity of a frequency ωc = 2πfc in anticipation of
transmission through a passband channel that only passes energy in this same frequency band. Thus,
passband signals are designed for passband channels.

Passband signals usually have been generated through multiplication of a “lowpass” signal by a
sinusoid to move the energy away from low frequencies towards the frequency band around ωc. Such
passband modulation is used on channels that do not pass DC or on channels that several signals
simultaneously share in non-overlapping frequency bands.

This section first investigates a number of equivalent representations of a passband signal, the most
interesting of which is the baseband equivalent signal in Subsection 2.1.1. The designer replaces the
original modulated passband signal with the baseband-equivalent signal in most modern transmission
analyzes. The objective in Subsection 2.1.1 is to teach the reader to generate such an equivalent signal
from the original signal. Subsection 2.1.2 studies the frequency content of baseband-equivalent signals,
essentially showing that amplitude is doubled and translated to DC. Since all baseband signals are
centered at DC, a common baseband processing method can be applied, for any passband channel, as
in Subsection 2.1.3. Figure 2.7 is a quick summary of this entire section.

2.1.1 Passband Signal Equivalents

The real-valued signal x(t) is a passband signal when its nonzero fourier transform is near ωc, as in
Figure 2.2. Passband signals never have DC content, so X(0) = 0.

Definition 2.1.1 (Carrier-Modulated Signal) A carrier-modulated signal is any pass-
band signal that can be written in the following form

x(t) = a(t) cos (ωct + θ(t)) , (2.1)

where a(t) is the time-varying amplitude or envelope of the modulated signal and θ(t) is
the time-varying phase. ωc is called the carrier frequency (in radians/sec).

The carrier frequency ωc is chosen sufficiently large compared with the amplitude and phase variations
of a(t) so that the power spectral density does not have significant energy at ω = 0. See Figure 2.2,
wherein the spectrum of X(ω) is concentrated in the passband ωlow < |ω| < ωhigh.

In digital communication, x(t) is equivalently written in quadrature form using the trigonometric
identity cos(u + v) = cos(u) cos(v) − sin(u) sin(v), leading to a quadrature decomposition:

Definition 2.1.2 (Quadrature Decomposition) The quadrature decomposition of a
carrier modulated signal is

x(t) = xI(t) cos (ωct) − xQ(t) sin (ωct) , (2.2)
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Figure 2.3: Decomposition of baseband-equivalent signal.

where xI(t) = a(t) cos (θ(t)) is the time-varying inphase component of the modulated
signal, and xQ(t) = a(t) sin (θ(t)) is the time-varying quadrature component.

Relationships determining (a(t), θ(t)) from (xI(t), xQ(t)) are

a(t) =
√

x2
I(t) + x2

Q(t) , (2.3)

and

θ(t) = Tan−1

[
xQ(t)
xI(t)

]
. (2.4)

In (2.4), the inverse tangent is taken with the polarities of the numerator and denominator independently
known, so there is no quadrant ambiguity in computing θ(t).

In passband processing and analysis, the objective is to eliminate explicit consideration of the carrier
frequency ωc and directly analyze systems using only the inphase and quadrature components. These
inphase and quadrature components can be combined into a two-dimensional vector, or into an equivalent
complex signal. By convention, a graph of a quadrature-modulated signal plots the inphase component
along the real axis and the quadrature component along the imaginary axis as shown in Figure 2.3. The
resultant complex vector xbb(t) is known as the complex baseband-equivalent signal.

Definition 2.1.3 (Baseband-Equivalent Signal) The complex baseband-equivalent sig-
nal for x(t) in (2.1) is

xbb(t)
∆= xI(t) + xQ(t) , (2.5)

where  =
√
−1.

The baseband-equivalent signal expression no longer explicitly contains the carrier frequency ωc.
Another complex representation that does explicitly contain ωc is the analytic equivalent signal for x(t):

Definition 2.1.4 (Analytic-Equivalent Signal) The analytic-equivalent signal for x(t)
in (2.1) is

xA(t) ∆= xbb(t)eωct . (2.6)
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The original real-valued passband signal x(t) is the real part of the analytic equivalent signal:

x(t) = <{xA(t)} . (2.7)

The Hilbert transform of x(t), denoted by x̌(t), is the imaginary part of the analytic signal as

x̌(t) = ={xA(t)} . (2.8)

(See Appendix A for more details on the Hilbert transform and a proof of (2.8).) Finally, the inphase
component xI(t) and the quadrature component xQ(t) can be expressed using the signal x(t) and its
Hilbert transform x̌(t) as (using xbb(t) = xI(t) + xQ(t) = xA(t) · e−ωct):

xI(t) = x(t) cos (ωct) + x̌(t) sin (ωct) (2.9)
xQ(t) = x̌(t) cos (ωct) − x(t) sin (ωct) . (2.10)

Thus, four equivalent forms for representing a real passband signal x(t) with carrier frequency ωc

are:
1. magnitude, phase a(t), θ(t)
2. inphase, quadrature xI(t), xQ(t)
3. complex baseband xbb(t)
4. analytic xA(t)

(2.11)

EXAMPLE 2.1.1 (Translation between equivalent representations:) A passband QAM
signal is

x(t) = sinc(106t) · cos(2π107t) + 3sinc(106t) · sin(2π107t) . (2.12)

The carrier frequency is 10 MHz and the symbol period is 1 µs. The inphase and quadrature
components are

xI(t) = sinc(106t) (2.13)
xQ(t) = −3 · sinc(106t) , (2.14)

so
xbb(t) = (1 − 3) · sinc(106t) . (2.15)

The amplitude and phase of the complex baseband signal are

a(t) =
√

10 · sinc(106t) (2.16)

θ(t) = Tan−1

[
−3
1

]
= −71.6o . (2.17)

Thus,
x(t) =

√
10 · sinc(106t) · cos(ωct − 71.6o) . (2.18)

Finally,
xA(t) = (1 − 3) · sinc(106t) · e2π107t . (2.19)

Section 2.1.2 next considers the relationship of the Fourier transforms of x(t), xbb(t), and xA(t).

2.1.2 Frequency Spectrum of Analytic- and Baseband-Equivalent Signals

Using Equations (2.7) and (2.8) the analytic signal is represented as shown in Figure 2.4.

xA(t) = x(t) + x̌(t) . (2.20)

Taking the Fourier Transform of both sides of (2.20) yields2

107



Figure 2.4: Analytic signal composition.

XA(ω) = [1 + sgn(ω)] X(ω) (2.21)

=





2X(ω) ω > 0
X(0) = 0 ω = 0
0 ω < 0

. (2.22)

The analytic equivalent signal, xA(t), contains only the positive frequencies of x(t) and is identically zero
for negative frequencies. The Fourier transform X(ω) of the real signal x(t) has two symmetry properties:
The real part R{X(ω)} is even in ω, while the imaginary part I{X(ω)} is odd in ω. Knowledge of
only the non-negative frequencies of X(ω), such as are supplied by the analytic signal, is sufficient for
reconstruction of X(ω). Thus, one confirms that the analytic signal xA(t) is truly “equivalent” to the
original signal x(t).

Using Equation (2.6), the Fourier transform of the baseband equivalent signal is simply the Fourier
transform of the analytic signal translated in frequency ωc. Thus

XA(ω) = Xbb(ω − ωc) (2.23)

and
Xbb(ω) = XA(ω + ωc) . (2.24)

Use of (2.6) and (2.7) allows reconstruction of the signal x(t) from the baseband equivalent signal xbb(t)
and the carrier frequency ωc. The baseband equivalent signal, in general, may be complex-valued, and
thus as shown in Figure 2.5 the spectrum of xbb(t) may be asymmetric about the origin ω = 0.

EXAMPLE 2.1.2 (Continuing Example) Figure 2.6 shows the original, baseband, and
analytic equivalent spectra of the signal

x(t) = sinc(106t) · cos(2π107t) + 3sinc(106t) · sin(2π107t) . (2.25)

The doubling in amplitude of the two complex signals’ Fourier transforms occurs because all
energy in these complex representations appears in a single positive-frequency band.

2If x̌(t) is the Hilbert transform of x(t), then the Fourier transform of x̌(t) is −sgn(ω)X(ω), where X(ω) is the Fourier
Transform of x(t), as shown in Appendix A.
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Figure 2.5: Baseband signal spectrum.

Figure 2.6: Spectra equivalents for example waveform.
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Figure 2.7: Equivalent representations of the channel input/output relationship.

Generation of the baseband equivalent

To generate the baseband equivalent of a signal, the structure in Figure 2.4 is used, where the second
complex multiply simply is 4 real multiplies using Euler’s formula eωct = cos(ωct) +  sin(ωct). The first
multiply by  alone is, of course, symbolic and simply means that the receiver processing views the signal
on that path as the imaginary part in complex arithmetic.

2.1.3 Passband Channels

The designer would like a relationship between the baseband equivalent modulated signal on the input
and output of a filtered passband channel. Such a relationship is easily computed and essentially is the
multiplication of the baseband input spectra by the transform of the channel translated from ωc to DC,
as this section shows.

The complex baseband representation can be used to characterize the input/output relationships of
passband signals and channels. In particular, if the passband signal x(t) is filtered by a passband linear
channel with impulse response h(t), passband analysis directly determines the baseband- and analytic-
equivalent representations of the filter-output signal y(t) as well as of the channel h(t). Figure 2.7
summarizes the final results that this section shall derive.

Equivalent representations of the channel response.

Any of the four representations found for passband signals in the previous section apply to the impulse
response or Fourier transform for the channel by using the same equations and substituting h for x. For
instance, linear time-invariant channels can be described by a real-valued impulse response h(t). For
any h(t), the analytic-equivalent channel hA(t) is

hA(t) ∆= h(t) + ȟ(t) . (2.26)

Similarly in the frequency domain,

HA(ω) = [1 + sgn(ω)] H(ω) . (2.27)
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The baseband-equivalent channel is defined in the same manner as a baseband equivalent signal,
except the carrier frequency ωc is set equal to that of the input, and output, signals.

Definition 2.1.5 (Baseband Equivalent Channel (at carrier frequency ωc)) The base-
band equivalent channel at any carrier frequency ωc is given by

hbb(t)
∆= hA(t) · e−ωct . (2.28)

For valid application of the term “baseband equivalent”, the carrier frequency should be
sufficiently large to guarantee that hbb(t) has no significant energy content at frequencies
|ω| > ωc,i.e., |Hbb(ω)| = 0 ∀ |ω| > ωc.

The equivalent views of channel input/output relations

The frequency-domain representation of the passband system at the top of Figure 2.7 is,

Y (ω) = H(ω) · X(ω) . (2.29)

Multiplying both sides of (2.29) by 1 + sgn(ω) leads to (middle of Figure 2.7)

YA(ω) = H(ω) · XA(ω) (2.30)

⇒ YA(ω) = [H(ω) · 1
2
· (1 + sgn(ω))] · XA(ω) =

[
1
2
· HA(ω)

]
· XA(ω), (2.31)

where the second relationship follows by observing that since the input has nonzero spectra only for
positive frequencies, one may then look at the action of the channel only at those same positive frequencies
(recalling that the factor (1/2)·[1+sgn(ω)] extracts the positive frequencies). More importantly, since the
linear time-invariant passband channel h(t) only scales and phase shifts each frequency independently,
the output y(t) has its power spectral density concentrated in the same frequency region (or a smaller
region if the channel zeroes a band) as the input x(t). Shift of the output spectrum y(t) down by ωc

yields

Ybb(ω) = YA(ω + ωc) =
[
1
2
HA(ω + ωc)

]
XA(ω + ωc) (2.32)

=
[
1
2
Hbb(ω)

]
Xbb(ω) (2.33)

= H(ω + ωc) ·Xbb(ω) ω > −ωc , (2.34)

which is also illustrated at the bottom of Figure 2.7. This leads to the definition of the baseband
equivalent system

Definition 2.1.6 (Baseband Equivalent System) The baseband equivalent system
for a passband system described by y(t) = x(t)∗h(t), where x(t) is a passband signal, is given
by

ybb(t) =
(

xbb(t) ∗
1
2
hbb(t)

)
(2.35)

or
Ybb(ω) = H(ω + ωc) ·Xbb(ω) . (2.36)

Obtaining the baseband equivalent channel is easy! Simply slide the Fourier transform of the chan-
nel response down to DC. Because the channel may be asymmetric with respect to ωc, the baseband
equivalent channel can be complex and usually is. The complexity of dealing with cosines, sines, and
carrier frequencies is removed by the baseband-equivalent representation. Any channel with any car-
rier frequency can thus be represented in a common baseband framework, which will be convenient for
many analyzes in digital transmission. This is why baseband-equivalent channels dominate in their use
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in digital transmission analysis. The baseband-equivalent input is convolved with the complex channel
corresponding to H(ω + ωc) to get the baseband-equivalent output.

A channel that is not passband, but rather initially real baseband, simply corresponds to the baseband
equivalent input/output representation with all imaginary parts zeroed, and H(ω) used directly (ωc = 0).

The input/output relationships can thus be summarized as follows: For the passband signals and
systems,

y(t) = x(t) ∗ h(t) (2.37)
Y (ω) = X(ω) · H(ω). (2.38)

For the analytic-equivalent system,

yA(t) = xA(t) ∗ 1
2
hA(t) (2.39)

YA(ω) = XA(ω) ·H(ω). (2.40)

For the baseband equivalent system,

ybb(t) = xbb(t) ∗
1
2
hbb(t) (2.41)

Ybb(ω) = Xbb(ω) · H(ω + ωc). (2.42)

Any of these three equivalent relations (and ωc ) fully describe the passband system.

EXAMPLE 2.1.3 (Bandpass channel for previous bandpass signals) A channel im-
pulse response is h(t) = 2 × 106sinc(106t) · cos(2π107t) corresponds to

H(f) =
{

1 |f ± 107| < .5× 106

0 elsewhere . (2.43)

Then
hI(t) = 2 × 106 · sinc(106t)

and
hQ(t) = 0 ,

so that hbb(t) = hI(t) or

Hbb(f) =
{

2 |f | ≤ 500 kHz
0 elsewhere .

Using the signal in Examples 2.1.1 and 2.1.2 as the channel input, the channel output is

Ybb(f) = H(f + fc) ·Xbb(f) = 1 · Xbb(f) |f | < 500 kHz (2.44)

or
xbb(t) ∗

1
2
hbb(t) = xbb(t) = (1 − 3) · sinc(106t) . (2.45)

Zero quadrature channel or hQ(t) = 0 does not mean that no quadrature signal components
are passed – it means that inphase components remain inphase components at the channel
output, and quadrature components similarly then remain quadrature components at the
channel output.

Appendix B extends the results of this section to passband random processes (this section only considered
deterministic signals) used on passband deterministic channels.

The next section considers the addition of random noise to the channel output.
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Figure 2.8: Scaling for passband white Gaussian noise

2.2 Baseband-Equivalent AWGN Channel

This section investigates the processing of a passband filtered AWGN channel. Some results from Ap-
pendix B on passband random processes appear and the reader may best read that appendix first before
proceeding, although such reading is not completely necessary. Figure 2.8 summarizes a scaling factor
used, explicity or tacitly, by all developments based on passband processes. This scale factor is simply
for analytical purposes and will make results consistent in all regards with those in Chapter 1.

The channel output y(t) is processed by the combination of a scale factor 1/
√

2 and a phase splitter to
generate a baseband equivalent signal ỹbb(t). The tilde is often dropped in the literature and the output
of the splitter is often called ybb(t) even though the scale factor is included. Generally speaking, the phase
splitter adds a signal to j times its own Hilbert transform. The Hilbert transform of a random process
has the same power as the original process (Appendix B). Thus, the phase splitter generally doubles
power somewhat arbitrarily. The scale factor of 1/

√
2 in front of the phase splitter causes the power to

appear the same. The power-scaling occurs equally for both the noise and signal, since both are present
in the channel output y(t), and so performance is not changed no matter what the scale factor and the
ratio of minimum distance to noise standard deviation is also unchanged by any scaling. Nonetheless, the
particular scaling is often presumed in phase splitters simply because the ensuing analysis is consistent
with the types of scalings also tacitly used in Chapter 1.

For analysis, the scale factor can be “pushed back” through the channel, and the baseband-equivalent
system in the middle of Figure 2.8 is equivalent to the upper figure with the explicit scaling. The scale
factor then occurs separately in each of the noise and signal components of the output. Each of the next
two subsections independently investigates this scaling and justifies its consistency with previous results.
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2.2.1 Noise scaling in the baseband AWGN

Appendix B shows that the power spectral density of the analytic equivalent of a random process is
equal to four times the power spectral density of the positive-frequency part of the original processing,
which tacitly implies a doubling of noise power.3

Since the scaled WGN, n(t)/
√

2, in Figure 2.8 has power spectral density.

Sn(ω) =
N0

4
, (2.46)

the power spectrum of the analytic equivalent of n(t)/
√

2 is

SA(ω) =





N0 ω > 0
N0
2 ω = 0

0 ω < 0
. (2.47)

The baseband equivalent noise has power spectrum that simply translates SA(ω) to baseband, or

Sbb(ω) =





N0 ω > −ωc
N0
2 ω = −ωc

0 ω < −ωc

. (2.48)

Strictly speaking, SA(ω) and Sbb(ω) do not correspond to white noise. However, practical systems will
always use a carrier frequency that is at least equal to the signal frequency, ωhigh, that corresponds to
the highest-frequency nonzero baseband signal component – that is, the design always modulates with a
carrier frequency large enough to “get away” from DC. In this case, the power spectrum of the baseband
equivalent noise appears as if it were “white” or flat at N0 for all frequencies of practical interest. The
noise in this baseband demodulated signal is complex AWGN with power spectral density N0. This is
generally accepted practice in digital communication.

Whenever the scaled phase-splitting arrangement of Figure 2.8 is used, this text defines baseband
equivalent WGN as follows:

Definition 2.2.1 (Baseband Equivalent WGN) Baseband Equivalent White Gaus-
sian Noise is a random process, ñbb(t), that is generated, essentially, through demodulation
of the Passband AWGN in Figure 2.8. The autocorrelation of the complex random process,
rbb(τ ) is thus defined to be

rbb(τ ) = N0 · δ(τ ) , (2.49)

and the power spectral density is thus

Sbb(f) = N0 . (2.50)

From Appendix B, the baseband autocorrelation is then

rbb(τ ) = 2rI(τ ) = 2rQ(τ ) = N0δ(τ ) , (2.51)

so that the inphase and quadrature noises each have power spectral density N0
2 and are white noise

signals. Further, from Appendix B and (2.51),

rIQ(τ ) = 0 , (2.52)

that is, the inphase and quadrature noises are uncorrelated for all time lags with baseband equivalent
WGN.

The complex baseband noise is two dimensional (two real dimensions), and the noise variance per
dimension is thus N0

2
, which is the reason for the scaling that was introduced in the definition of passband

WGN. This scaling makes the noise variance per dimension the same as discussed in Chapter 1.
3The autocorrelation of the analytic equivalent noise is rA(τ) = 2(rn(τ) + řn(τ)) . See Appendix B for more details.
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2.2.2 Scaling of the Signal

A brief review of the basis-function modulator of Chapter 1 will assist understanding of the effect of
the scaling: The two normalized QAM passband functions for transmission on the one-shot AWGN are
again

ϕ1(t) =
√

2ϕ(t) cos(ωct) (2.53)

ϕ2(t) = −
√

2ϕ(t) sin(ωct) , (2.54)

where for practical reasons, ωc is high enough.4 The modulated signal

x(t) = x1ϕ1(t) + x2ϕ2(t) (2.55)

=
√

2{x1ϕ(t) cos(ωct)} −
√

2 {x2ϕ(t) sin(ωct)} , (2.56)

has baseband equivalent signal
xbb(t) =

√
2 (x1 + x2) · ϕ(t) . (2.57)

The scaling of Figure 2.8 removes the extra factor of
√

2 that arose through normalization of the modu-
lated basis function. The bottom diagram in Figure 2.8 shows this removal explictly so that the system
appears as a complex baseband system with complex input

x̃bb(t) = (x1 + x2) · ϕ(t) . (2.58)

Equation (2.58) becomes
x̃bb(t) = xbb ·ϕ(t) (2.59)

where
xbb

∆= (x1 + x2) . (2.60)

Equations (2.59) and (2.60) constitute a single-dimension complex baseband representation of the QAM
modulator with (now normalized) basis function ϕ(t) that is entirely consistent in all regards with the
two-real-dimensional representation of Chapter 1. The average energy of the complex signal constellation
is

Ebb = Ex = 2Ēx , (2.61)

which maintains the convention that a complex signal is equivalent to a two-dimensional real signal in
defining Ēx.

The tildes are necessary for those learning baseband analysis, but are dropped without comment
throughout the literature. So one often sees a complex AWGN defined by Figure 2.9, where the tildes
are dropped, but the scaling of noise and signal are consistent with the 1/

√
2 in Figure 2.8.

Furthermore, this figure is often used to represent one-dimensional real systems where no passband
modulation effects are of concern. In this case, the quadrature (imaginary) dimension is tacitly zeroed,
while the real dimension carries the signal and has noise power spectral density N0

2 , entirely consistent
with Chapter 1.

4One verifies that these functions are indeed normalized – if ϕ(t) is normalized, as we assume – by investigating their
power spectra under modulation.
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Figure 2.9: Baseband AWGN
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2.3 Conversion to a baseband equivalent channel

Baseband analysis is applied to a QAM system where the channel and noise have been modeled as
equivalent baseband. The system then looks like a PAM system except that inputs, outputs and internal
quantities are all complex with the real dimension corresponding to the “cosine” modulated component
and the imaginary dimension corresponding to the “sine” modulated component. After moving to a
complex baseband equivalent, the effect of the carrier has been removed from all subsequent analysis.

2.3.1 Demodulators for the generation of the baseband equivalent

The actual generation of the baseband equivalent output signal can take one of the two equivalent forms
in Figure 2.10. Figure 2.10(a) repeats the “phase-splitter” generation of the analytic equivalent, yA(t).
The scale factor is of course absorbed into the definition of noise power spectral density and baseband
input modulator for convenient analysis, as in the last section. The analytic signal yA(t) is demodulated
by e−jωct to generate ybb(t). Figure 2.10(b) illustrates a more obvious form of generating ybb(t) that
is sometimes used in practice. The structure in Figure 2.10(b) generates the inphase and quadrature
components, yI(t) and yQ(t) by multiplying y(t) by 2 cos(ωc(t)) and 2 sin(ωc(t)) in parallel. Then,

2 cos(ωc(t))y(t) = yI(t)2 cos(ωc(t))2 − yQ(t)2 sin(ωc(t)) cos(ωc(t))
= yI(t)(1 + cos(2ωct)) − yQ(t) sin(2ωc(t))

and

2 sin(ωc(t))y(t) = yI(t)2 cos(ωc(t)) sin(ωc(t)) − yQ(t)2 sin(ωc(t))2

= yI(t) sin(2ωct) + yQ(t)(cos(2ωc(t)) − 1)

Lowpass filtering of 2 cos(ωc(t))y(t) and 2 sin(ωc(t))y(t) removes the signal artifacts centered at 2ωc. In
practice, it is usually easier to implement the two identical lowpass filters in Figure 2.10 (b) than the
Hilbert filter in Figure 2.10 (a); so the implementation shown in Figure 2.10 (b) may be preferred in
simple communication systems. In more sophisticated designs, especially those involving equalization
(see Chapter 3), the implementation in Figure 2.10 (a) can have some practical performance advantages
for the implementation of carrier-phase recovery systems (see Chapter 6).

EXAMPLE 2.3.1 (demodulation of a specific signal) As in Example 2.1.1 from Sec-
tion 2.1, a passband AWGN-channel output QAM signal is

z(t) = sinc(106t) · cos(2π107t) + 3 · sinc(106t) · sin(2π107t) + n(t) . (2.62)

The carrier frequency is 10 MHz and the symbol period is 1 µs. Proceeding through the
demodulator in Figure 2.10(a), z(t) is the channel output signal that is input to the demod-
ulator. The signal after scaling by 1√

2
is

y(t) =
z(t)√

2
=

1√
2
· sinc(106t) · cos(2π107t) +

3√
2
· sinc(106t) · sin(2π107t) +

n(t)√
2

, (2.63)

so that effectively this choice of location for defining y(t) allows the 1/
√

2 scaling factor to
be viewed as absorbed into the channel. The Hilbert transform of this scaled signal for the
lower path in parallel in Figure 2.10(a) is

y̌(t) =
1√
2
· sinc(106t) · sin(2π107t) − 3√

2
· sinc(106t) · cos(2π107t) + ň(t) . (2.64)

Multiplying the Hilbert transform by  and adding to the upper unchanged component (y(t))
creates the analytic signal

yA(t) = y(t) + y̌(t) , (2.65)
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Figure 2.10: Complex demodulator.

which after multiplication by the carrier-demodulating term e−ωct provides a baseband
equivalent signal ybb(t) = e−ωct · yA(t)

ybb(t) =
1 − 3

1000 ·
√

2
· 1000 · sinc(106t) + nbb(t) . (2.66)

This baseband signal has a real component of .001/
√

2 and an imaginary component of
−.003/

√
2 and the component of noise in each of these dimensions is N0

2 . These are indeed
the components that would have been associated with this signal if viewed in Chapter 1 as

x(t) = sinc(106t)·cos(2π107t)+3·sinc(106t)·sin(2π107t)+n(t) = x1 ·ϕ1(t)+x2 ·ϕ2(t) (2.67)

where the normalized basis functions are

ϕ1(t) =
√

2 · 1000 · sinc(106t) cos(ωct) (2.68)

ϕ2(t) = −
√

2 · 1000 · sinc(106t) sin(ωct) . (2.69)

If the baseband signal ybb(t) is now passed through the matched filter 1000 · sinc(106t) and
sampled at time 0, the two components .001/

√
2 and −.003/

√
2 are obtained on the real

and imaginary dimensions of the output. The relevant independent noise component in each
of these dimensions is N0

2
, the power-spectral density of the original white noise, which is

equal to its variance per dimension. Thus, this example illustrates how the QAM signal
is recovered using the matched filter (if noise is zero)of Chapter 1 exactly with no gain or
scaling factors on the original components if the scaling demodulator in Figure 2.10 is also
used in the receiver.

The subsequent subsection now adds a filtering channel with impulse response h(t) to the system and
investigates modeling of the filtered AWGN as a complex baseband equivalent for QAM transmission.

2.3.2 Generating the baseband equivalent: some examples

The transmission engineer is nominally presented with a variety of information about the transmission
channel for which they must design a modem. Often in this author’s experience, this information is not
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Figure 2.11: Illustration of passband and (1/2 times) baseband-equivalent for wireless two-ray multipath
channel.

in a convenient form initially, and a considerable amount of time and effort is spent understanding and
transforming the channel. Part of this understanding involves generating the baseband-equivalent chan-
nel so that the tools of analysis in this text can be applied. The first example of a two-ray mathematical
model for a channel may be easier for the student to follow mathematically because it starts with a very
plausible and tractable mathematical model. The second example starts with information that must be
converted to an acceptable response.

EXAMPLE 2.3.2 (Two-ray wireless channel) Wireless transmission sometimes is (over-
simply) modeled by a two-ray model. A transmission path between transmit and receive
antennas has then two paths between the antenna, one direct and one indirect. The latter
path usually represents a reflection from a building, mountain, or other physical entity. The
second path is usually delayed (say by τ=1.1 µs) and attenuated (say 90% of the amplitude
of the first path) with respect to the first path. Let us then say that the channel impulse
response is then

h(t) = g (δ(t) − .9δ(t− τ )) , (2.70)

where g is an attenuation factor that models the path loss and antenna losses. The Fourier
transform is

H(f) = g
(
1 − .9e−2πfτ

)
. (2.71)

The noise will be white and a combination of a number of factors, natural and man-made with
one-sided PSD -150 dBm/Hz. Wireless systems often use carrier frequencies between 800 and
900 MHz, so let us choose a carrier for QAM modulation at 852 MHz and further choose
4QAM transmission with a symbol rate of 1/T=1.0 MHz. Thus, frequencies between 852-.5
= 851.5 MHz and 852+.5=852.5 MHz are of interest, corresponding to a baseband-equivalent
channel with frequencies between -500 kHz and + 500 kHz.

The complex-channel model for this transmission is then

1
2
hbb(t) = g (δ(t) − .9δ(t− τ )) · e−2πfct (2.72)

with Fourier transform

1
2
Hbb(f) = H(f + fc) = g

(
1 − .9e−2π(f+fc)τ

)
. (2.73)
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Figure 2.12: Real and imaginary parts of (scaled) baseband equivalent channel response for two-ray
example.

Figure 2.11 plots the original channel response from 850 MHz to 860 MHz, along with the
complex channel for baseband modeling (with factor of 1/2 included) from -500 kHz to 500
kHz. The channel clearly has “notching” effects because of the possibility of the second
path adding out-of-phase (with phase π) at some frequencies. The wider the bandwidth
of a QAM transmission system, the more likely one (or more) of the “dips” is to occur in
the transmission band of interest. Thus, this “multipath” distortion will lead to a non-flat
or filtered-AWGN channel response (which means the techniques of Chapter 3 and later
chapters are necessary for reliable recovery of messages). The baseband-equivalent (actually
1/2 amplitude is included in the plot) is clearly not symmetric about frequency zero, meaning
its baseband equivalent impulse response is complex, as the formula above in (2.72) also
implies. The real and imaginary parts of the baseband-equivalent response appear in Figure
2.12. The baseband-equivalent noise for the model introduced in this Section is still white
and has N0=-150 dBm/Hz, or equivalently N0 = 10−18. For typical values of g in well
designed transmission systems, this will be a few orders of magnitude below the signal levels.
It’s very simple in this case: Slide the Fourier transform in the band of interest down to DC,
then set the complex noise level equal to the single-sided PSD.

In more sophisticated transmission design, the 2-ray model that easily led to a nice compact mathe-
matical description is a rarity. More likely, the engineer will be given (or will have to measure himself)
the channel frequency attenuation in dB at several frequencies in the band of transmission, along with
the measured delay of signals through the channel at each of these frequencies. The noise is also likely to
have been measured within bands centered around each of the measured channel frequencies (or perhaps
at other frequencies). The process of conversion to a complex baseband channel may be tedious, but
follows the same steps as in the next example.

EXAMPLE 2.3.3 (Telephone Line Channel) Telephone lines today are sometimes used
for transmission of data within the home at speeds as high as 10 Mbps, using a transmission
system sometimes known as Home Phone Network Access (HPNA) or “G/pnt”. The carrier
frequency is 7.5 MHz and the symbol rate is 5 MHz for a 4 QAM signal. Telephone line
attenuation versus frequency is often measured in terms of “insertion loss” in dB, a ratio of
the voltage at the line output to the voltage at the same load point when the phone line
is removed. For a well-matched system, it can be determined that this insertion loss is 6
dB above the transfer function from source to load, which is the desired function for digital
transmission analysis. Figure 2.13 plots the insertion loss in dB for a 26-gauge phone line of
length 300 meters. The baseband equivalent channel response is in the frequency range from
5 MHz to 10 MHz, which the designer “slides” so that 7.5 MHz now appears as DC, as also
illustrated in Figure 2.13. Note that the characteristic has been increased by 6 dB to get the
transfer function, and again the baseband complex channel shown includes the scale factor
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Figure 2.13: Illustration of passband insertion loss and (1/2 times) baseband-equivalent transfer function
for home-phone network example.

Figure 2.14: Illustration of passband delay and baseband-equivalent phase for home-phone network
example.

of 1/2. The designer would presumably be given (or has measured) the insertion loss at a
sufficient number of frequencies between 5 and 10 MHz, stored those values in a file, and now
is analyzing them with digital signal processing. To use common digital signal processing
operations like the inverse Discrete Fourier Transform, the measured values will need to be
equally spaced in frequency between 5 MHz and 10 MHz. Let us say here that 501 mea-
surements with spacing 10 kHz have been so taken. These 501 values form the amplitudes
(after conversion of dB back into linear-scale values) of the channel transfer function at the
frequencies 5 MHz, 5.01 MHz, ... 10 MHz, or for baseband (increased by 6 dB to compute
transfer function from insertion loss) equivalent from -2.5 MHz to 2.5 MHz.

The line is also characterized in terms of its delay at all these same frequencies, usually
measured in microseconds and plotted in Figure 2.14. The index will be from n = 0, ..., 500
across the frequency band of interest. Since delay is negative the derivative of phase, to
compute the phase angles for the baseband equivalent transfer function, the phase needs to
be accumulated (with minus sign) from -2.5 MHz to each and every frequency of interest
according to

6 Hbb(−2.5MHz + n · .01MHz) = θ0 −
n∑

i=0

Delay [Hbb(i)] , (2.74)

where θ0 is an constant arbitrary phase reference that ultimately has no effect on transceiver
performance, and thus usually taken to be 0. The baseband equivalent channel (scaled by
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Figure 2.15: Illustration of baseband equivalent complex channel for home-phone network example.

Figure 2.16: Illustration of baseband-equivalent complex noise for home-phone network example.

1/2) is then found by inverse DFT’ing (IFFT command in Matlab) the vector of values
Hbb(n) n = 0, ..., 500. Because of the arbitrary phase, the time-domain response is usually
not centered and has nonzero components at the beginning and end of the response. Simple
circular shift (already included in Figure 2.14) will provide a “centered” hbb(t) sampled at
the symbol rate (which can be made causal by simple reindexing of the time axis). The
transmit psd of the 4QAM signal is about -57 dBm/Hz, so that the power is then about 10
dBm (or 10 milliwatts). To interpolate the baseband response to finer time-resolution than
the symbol rate, a band wider than 5-10 MHz must be measured, translated to DC, and then
inverse transformed.

An interesting effect in telephone-line transmission is that neighbors’ data signals can be
“heard” through electromagnetic coupling between phone lines in phone cables “upstream”
of the home. Thus, the noise is not “white,” and a simple model for the one-sided power
spectral density of this noise has power spectral density:

−187 + 15 log10(f) dBm/Hz . (2.75)

This power-spectral density can be computed with f values from 5 MHz to 10 MHz, and
then translated to baseband to obtain the baseband-equivalent psd as in Figure 2.16. To find
the so-called “white-noise equivalent” in Section 1.7 for this complex baseband equivalent
channel, the inverse noise psd can be IFFT’d to the time-domain and factored using the
roots command in matlab. Terms with roots of magnitude greater than 1 correspond to the
minimum-phase factorization, said inverse can then be convolved with the channel .5hbb(kT )
to find the white-noise equivalent channel samples at the symbol rate.
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This last example seems like much tedious work, and it is perhaps simple comparied to what com-
munication engineers do. It is provided to emphasize how important it is for communications designers
to know and well model their channel so that the theories and guidance learned from this text can be
applied. Thus, the excuse “well, nothing I learned had any value” is more likely that the engineer did
not understand the level of work involved in making what has been learned of value.

2.3.3 Complex generalization of inner products and analysis

The theory of optimum demodulation for complex signals in the case of the baseband equivalent WGN
channel, or generally any complex channel (see later sections), is essentially the same as that for real
signals in Chapter 1. All analysis and structure of detectors previously derived carries through with the
following generalizations for complex arithmetic:

1. The inner product becomes

< x, y >= x∗y =
∫ ∞

−∞
x∗(t)y(t)dt , (2.76)

(x∗ means conjugate transpose of x).

2. The matched filter is conjugated, that is ϕ(T − t) → ϕ∗(T − t).

3. Energies of complex scalars are Ex = E
{
|x(t)|2

}
, or the expected magnitude of the complex scalar,

and Ēx = Ex/2.
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2.4 Passband Analysis for QAM alternatives

Passband analysis directly applies to QAM modulation in a way that simply requires computing the
baseband equivalent of a channel for convolution with the complex input (x1 + x2)ϕ(t). Some trans-
mission systems instead may use one of the three other implementations mentioned in Section 1.6, VSB,
CAP, or OQAM. This section addresses the specifics of how the passband analysis concepts discussed
so far still apply to these other passband modulation types. In all cases, a complex-equivalent channel
can be found easily from the given channel transfer function.

2.4.1 Passband VSB Analysis

This section starts with SSB (single-side-band) and then generalizes to VSB. With SSB, the transmitted
signal has xI(t) and xQ(t) that are Hilbert transforms of one another and thus

x(t) = xI(t) · cos(ωct) − x̌I(t) · sin(ωct) . (2.77)

Such a signal only exhibits nonzero energy content for frequencies exceeding the carrier frequency (and
for frequencies below the negative of the carrier frequency). The baseband equivalent of an SSB signal
is also therefore analytic, for which we introduce the new notation

xAb(t) = xbb(t) = xI(t) + x̌I(t) . (2.78)

The subscript of Ab is intended to represent a new signal that is both analytic and baseband and used
in SSB analysis. The baseband equivalent of a channel output is consistently

yAb(t) = xAb(t) ∗
(

hAb(t)
2

)
(2.79)

YAb(ω) = XAb(ω) · H(ω + ωc) ω > 0 . (2.80)

With a little thought, the reader should realize that the previous analysis of passband channels applies
for any carrier frequency and not just one centered within the passband. Thus, baseband-equivalent
analysis directly applies to SSB also and the “Ab” notation has just made the position of the carrier
frequency on the lower edge of the band explicit. However, the input construction is such that xQ(t) is no
longer independent of xI(t). Generally speaking, with this SSB constraint, twice as many dimensions per
second are transmitted within xI(t) for SSB than would be the case for QAM with the same bandwidth.
However, QAM can independently use the quadrature dimension whereas this dimension is completely
determined from the inphase dimension with SSB. The analysis for lower sideband (instead of the
assumed upper sideband in this analysis) follows by simply negating the quadrature component and
choosing the carrier frequency at the upper edge of the passband, then the baseband equivalent is
nonzero for negative frequencies only, but still a special case of the general analysis of Sections 2.1 and
2.3.

VSB transmission is based on SSB transmission. In general, VSB systems have xI(t) and xQ(t)
selected in such a way that they are almost Hilbert transforms of one another. A VSB system may be
easier to implement in practice and is always based on an equivalent SSB signal. With the nomenclature
of this text, the baseband equivalent of a VSB signal, for which we introduce the notation xV b(t) has
“vestigial” symmetry about f = 0 – that is XV b(f) + XV b(−f) = XAb(f) ∀ f > 0 where XAb(f) is for
the (analytic) SSB signal in (2.78) upon which the VSB signal is based. The VSB signal is based on
a carrier frequency that is not at the edge of the passband. This carrier frequency is the point around
which the passband signal exhibits vestigial symmetry. This frequency is again selected for the baseband
equivalent representation of the channel,

YV b(ω) = XV b(ω) · H(ω + ωc) ω > −ωc . (2.81)

Terrestrial digital television broadcast in the USA uses VSB transmission with carrier frequencies at
the nominal TV carrier positions of 52 MHz + i·(6 MHz), effectively b̄ = 2 (constellation is coded so
it is called 64 VSB, where extra levels are redundant for coding, see Chapter 10) and a symbol rate of
roughly 5 MHz, for a data rate of 20 Mbps. The signals thus have non-zero energy from about 1.5 MHz
below the carrier and to 3.5 MHz above the carrier using vestigial transmit symmetry with respect to
that carrier.
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2.4.2 Passband CAP Analysis

Analysis of CAP (carrierless amplitude phase) modulation essentially relies on analytic signal and channel
equivalents instead of baseband equivalents.

A CAP signal is generated according the following observation of Werner for the sum (sequence) of
analytic QAM signals (xk can be complex and represents the two-dimensional QAM symbol transmitted
at symbol time instant k and ϕ(t) is the baseband equivalent modulating function)

xA(t) =
∑

k

xkϕ(t − kT )eωct (2.82)

=
∑

k

xkϕ(t − kT )eωct · e−ωckT · e+ωckT (2.83)

=
∑

k

(xk · e+ωckT )ϕ(t − kT ) · eωc(t−kT ) (2.84)

=
∑

k

x̃kϕA(t − kT ) (2.85)

where the new quantities are defined as

ϕA(t) = ϕ(t) · eωct

and x̃k = xk · e+ωckT (a rotated version of the input).5 Thus, a CAP system uses simple rotation of
the encoder outputs to create a symbol-time-invariant realization of the subsequent modulation. Since
the sequence of rotations is known, the receiver need only detect x̃k, and xk can easily be determined
by reverse rotations,

xk = x̃ke−ωckT .

In practice, the rotations are ignored and the sequence x̃k itself directly carries the information, not-
ing that the rotations at each end simply undo each other and have no bearing on performance or
functionality. They are necessary only for equivalence to a QAM signal.

The channel output of interest is then the analytic channel output so that

yA(t) = xA(t) ∗
(

hA(t)
2

)
(2.86)

YA(ω) = XA(ω) · H(ω) ω > 0 . (2.87)

With CAP then, only the analytic signals are of interest, and the complex channel that describes the
method is the analytic equivalent channel that is found by zeroing the Fourier transform for negative
frequencies (and for which we introduce the notation HCAP specific to analysis of CAP transmission
over a channel with response generally noted by h(t).):

HCAP (ω) = H(ω) · 1
2

(1 + sgn(ω)) . (2.88)

In practice, on a channel with narrow transmission band relative to the carrier frequency, intermediate-
frequency (IF) demodulation is used to reduce (but not zero) the effective center frequency of the
transmission band closer to DC. Then CAP is applied to the IF demodulated signal. The IF demodulation
treats the transmission signals as if they were analog signals and can be considered outside the realm
and interest of digital data transmission.

Nonetheless, after conversion to complex equivalent channels, both QAM and CAP receiver processing
can be generally described by the processing of a complex channel output, and such a complex model is
the objective of this chapter.

5This x̃k is notation used specific to the CAP situation here, and is not intended to be equivalent to any other temporary
uses of a tilde on a quantity elsewhere in this textbook.
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2.4.3 OQAM or “Staggered QAM”

The basis functions for OQAM appear in Section 1.6 of Chapter 1. One could rewrite this entire
Chapter with cos(ωct) replaced by sinc(t/T ) cos(ωct) and most importantly sin(ωct) replaced by sinc([t−
T/2]/T ) sin(ωct) everywhere – and all results would still hold. However, there is an easier way to reuse
what has already been derived: Now, with the reader’s understanding of passband signals, a transmission
engineer can say that the essential difference between OQAM and QAM is that the quadrature component
is delayed by one-half symbol period with respect to the inphase component in OQAM. The designer
can analyze a new equivalent channel input with double the symbol rate and a time-varying encoder
that alternates between a nonzero inphase component (with zero quadrature component) and a nonzero
quadrature component (with zero inphase component. This new time-varying double-speed symbol
sequence can then be applied to a conventional QAM modulator to generate the OQAM sequence. All
results developed so far then apply to this new equivalent system running at twice the symbol rate. The
energy per dimension Ēx will reduce by a factor of 2 if power is maintained constant.

Thus, to find the output of a channel with impulse response h(t) = <{hbb(t)eωct} to an OQAM
input, simply convolve the baseband equivalent of the continuous-time x(t) formed from the double-
symbol-rate “interleaved” symbol sequence with [hbb(t)]/2. Again a complex channel will have been
constructed for analysis – the objective for this chapter.

The inphase and quadrature dimensions are not strictly independent since they have alternating
zero values. This dependence or correlation effectively halves the bandwidth so that an OQAM system
running with symbol rate 1/T and the basis functions in Section 1.6, even though analyzed as a QAM
system running with interdependent symbols at rate 2/T , occupies the same bandwidth as QAM. In
fact as the function ϕi(t) is generalized (See Chapter 3) so that ϕ(t) 6=

√
1/T sinc(t/T ), then OQAM

typically requires less bandwidth in terms of the inevitable “non-brick-wall” energy roll-off associated
with practical filter design.

126



Exercises - Chapter 2

2.1 Passband Representations.
Consider the following passband waveform:

x(t) = sinc2(t)(1 + A sin(4πt)) cos(ωct +
π

4
),

where ωc >> 4π.
Hint: It may be convenient in working this problem to use the identity cos(a + b) = cos a cos b −

sin a sin b to rewrite x(t) in inphase and quadrature, and to realize/define sinc2(t) equal to a more general
pulse shaping function p(t), recognizing that this particular choice of p(t) has a fourier transform that
is well known and easily sketched.

a. Sketch (roughly) Re[X(ω)] and Im[X(ω)]. (2 pts)

b. Find xbb(t), the baseband equivalent of x(t). Sketch (roughly) Xbb(ω). (3 pts)

c. Find the xA(t) analytic equivalent of x(t). (2 pts)

d. Find the Hilbert Transform of x(t). (2 pts)

2.2 A two tap channel.
The two equally likely baseband signals,x̃bb,1(t) and x̃bb,2(t) illustrated in the following figure are

used to transmit a binary sequence over a channel. The use of the scaling phase splitter in Figure 2.8 is
assumed. Note that the two signals do not seem to be of the form (x1 + x2)ϕ(t) directly. However, this
form can be applied if one views each of these two signals as a succession of four “one-shot” inputs to the
channel, each of which can be construed as of the form (x1 + x2)ϕ(t− iT/4), i = 0, 1, 2, 3 – this view is
not necessary, however, to work this problem. Equivalently, an easy representation is a four-dimensional
symbol vector.

Figure 2.17: Two baseband signals.

The baseband equivalent channel impulse response is

hbb(t) = 4δ(t) − 2δ(t − T )

The transmission rate is R = 1
2T

bits per second to avoid pulse overlay.

a. Sketch the two possible baseband equivalent noise–free received waveforms. (2 pts)

b. Compute the squared distance between the two baseband possible signals as the integral of the
squared difference between the two signals at the channel input. Compute the same distance after
filtering by the channel impulse response.(2 pts)
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c. Determine Pe for transmission of the two corresponding messages where nbb(t) has autocorrelation
rbb(t) = N0δ(t) with N0 = 1

20Ex where Ex is the average energy before filtering by the channel
response. (4 pts)

2.3 A bandpass channel. (from Proakis)
The input x(t) to a bandpass filter is

x(t) = u(t)cos(wct)

where

u(t) =
{

A if t ∈ [0, T ]
0 otherwise

Please assume that wc is sufficiently high that x(t) has only a neglible amount of energy near DC.

a. (3 pts) Determine the output y(t) = g(t) ∗ x(t) of a bandpass filter for all t ≥ 0 if the impulse
response of the filter is,

g(t) =
{

2
T e−t/T cos(ωct) if t ∈ [0, T ]
0 otherwise

b. Sketch the equivalent lowpass output of the filter if it is passed through the scaling phase-splitter,
ỹbb(t) =? (1 pt)

c. Assume the baseband equivalent noise at the output of the scaling phase splitter has variance N0

and that there are two dimensions. What is the SNR of the output? (3 pts)

d. For what value of A is the SNRchannel output=13 dB if the power spectral density of the channel’s
AWGN (N0

2
) is - 30 dBm/Hz and 1/T = 1000 Hz? Repeat for -100 dBm/hz and 1 MHz respectively.

2.4 Passband equivalent system.
A baseband-equivalent waveform (wc > 2π)

x̃bb(t) = (x1 + jx2)sinc(t)

is convolved with the complex filter

w1(t) = δ(t) − jδ(t − 1)

a. (1 pt) Find
y(t) = w1(t) ∗ x̃bb(t).

b. (1 pt) Suppose y(t) is convolved with the imaginary filter

w2(t) = 2jsinc(t)

to get

z(t) = w2(t) ∗ y(t)
= w2(t) ∗ w1(t) ∗ x̃bb(t)
= w(t) ∗ x̃bb(t).

Find z(t). Note that sinc(t) ∗ sinc(t − k) = sinc(t − k), k an integer.

c. (3 pts) Let
z̃(t) = Re

(
z(t)ejwct

)
= w̃(t) ∗ x(t) ,

where x(t) = <{x̃bb(t)eωct}. Show that

w̃(t) = 4sinc(t − 1)cos(wct) − 4sinc(t)sin(wct)

when convolved with the passband x(t) will produce z̃(t). Hint: Use baseband calculations.
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2.5 Matlab demodulator.
For this problem you will need three matlab files: x.mat, plt fft.m, and plt cplx.m. You can get

these files from the class web-site. If absolutely necessary, the TA can copy the necessary files onto a
floppy provided by you or email you the files.

In this problem you will demodulate three symbols of a passband 4 QAM signal. Our baseband basis
function is a windowed sinc function. The sampling rate that provided our digital received signal was
1000 Hz. As is typical of such systems, the received signal that you will start with is the real part of
the analytic signal. Usually the signal will have been convolved with a channel response and had noise
added, but we have been blessed with an extremely clean channel.

a. Obtain the three needed files. Execute load x.mat which will create a 747 point vector x which
contains 3 symbol periods of received signal. (Each symbol period is 249 samples). The function
plt cplx plots the real and imaginary parts of a complex vector. It takes two arguments, the
vector and the plot title. Execute plt cplx(x, ’received signal’) and turn in your plot. Note
that the received signal is indeed real. While you cannot identify the constellation points, you
should be able to easily spot the three symbols. (1 pt)

b. Now execute plt fft(x, ’received signal’) to plot an FFT of the received signal. Turn in your
plot. Neglecting powers below -50 dB, to what range of frequencies is this signal bandlimited?
(2 pts)

c. Now use the function hilbert() provided by MATLAB to recover the analytic signal x A. You
might want to execute help hilbert to get started. Use plt fft to plot the FFT of x A. Turn in
your plot. How is this signal different from x? In your discussion, you may again neglect signal
power below -50 dB. (2 pts)

d. The carrier frequency is 250 Hz. As mentioned before, our sampling frequency is 1000 Hz. Show
that the discrete time radian carrier frequency is π

2 radians/sec. (1 pt)

e. (4 pts) Now demodulate x A to create the baseband signal x bb by executing the following
command:

x bb = x A .* exp (-j * 0.5 * pi * [0:746]);

Plot both the FFT and complex time sequence as before, and turn in your plots. In what range of
frequencies is x bb non-negligible? Why? By examining the complex time sequence plot, decode
the received signal. The complex constellation points have been labeled as shown below. To select
the correct constellation point for each symbol, you really need only consider the sign of the real
and imaginary scale factors multiplying the windowed sinc pulse.

Figure 2.18: 4-QAM constellation with message labels 3, 5, 7 & 9

2.6 Baseband Analysis
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Consider the two baseband equivalent signals, x̃bb,1(t) and x̃bb,2(t).

x̃bb,1(t) =
{

A (1 + j) if t ∈ [0, T ]
0 otherwise

x̃bb,2(t) =





A (1 − j) if t ∈
[
0, 3

4T
]

−A (1 − j) if t ∈
(

3
4
T, T

]

0 otherwise

j =
√
−1

These signals can be used to transmit a binary signal set.

pxbb
(1) = pxbb

(2) =
1
2

The transmitted signals are corrupted by AWGN having a baseband equivalent representation corre-
sponding to the scaled phase splitter of Figure 2.8, ñbb(t), with an autocorrelation function

rñbb(τ ) = E [ñ∗
bb(t)ñbb(t + τ )] = N0δ(t)

a. Find Ex. (2 pts)

b. Find Pe as a function of A, T and N0. (1 pts)

c. Find A2

N0
in terms of T if SNR=12.5 dB. Compute the probability of error Pe (a numerical value is

required). (1 pts)

2.7 Twisted pairs

Figure 2.19: Insertion loss for 26-gauge (TP1) and 24-guage (TP2) twisted-pair phone line.

Figure 2.19 shows the magnitude(in dB) of the insertion losses (which is 6 dB more than the transfer
function H(f)) for several lengths of two-types of twisted pair. Suppose the signals are passband, with
frequencies ranging from 6MHz to 12 MHz. You want to analyse this transmission system in baseband.
Assume a carrier frequency of f = 9 MHz. Assume the receiver uses a scaling phase splitter.

a. Draw the frequency responses of the complex channels to which you would apply the complex
modulator input x̃bb(t), corresponding to the scaling in Figure 2.8. (1 pt)

b. Compute the noise power spectral density (two-sided) of the WGN that you would add to each of
your complex channel outputs to model transmission if the one-sided power spectral density of the
AWGN noise on the channel is given as -140 dBm/Hz. (2 pts)

130



2.8 Signal transformation practice
Find the Hilbert transform of:

x(t) = sinc(
t

T
) cos(ωct +

π

4
)

where
ωc ≥ π

T
.

2.9 baseband analysis - Midterm 1994
The two baseband equivalent signals at the modulator output using the scaling in Figure 2.8 for

binary transmission:

x̃0(t) =
1√
T

sinc
(

t

T

)
+ 

√
2
T

cos
(

πt

T

)
· sinc(t/T )

x̃1(t) = 

√
2
T

sin
(

πt

T

)
· sinc(t/T )

are transmitted over an AWGN with N0
2

= .02. Determine Pe.

2.10 Complex channel evaluation - Midterm 1995
A passband channel has complex baseband equivalent impulse response

hbb(t) = (1 + )δ(t) .

A 4 QAM (QPSK) input with the constellation labeling below in Figure 2.20 is input to this channel.
WGN is added at the output of this channel with power spectral density N0

2 = .04.

Figure 2.20: Channel input for Problem 2.10

a. Draw the complex signal constellation points xbb. (1 pt)

b. Calculate and draw the constellation for the corresponding four signal constellation points at the
output of this channel and a scaling demodulator. Call these points y0, ..., y3 where the subscripts
correspond to the subscripts on the channel input. (2 pts)

c. Write a quadrature decomposition for y0’s corresponding passband modulated signal. (2 pts)

d. Calculate and draw the constellation for the sampled matched-filter outputs in the absence of noise.
(3 pts)

e. Sketch the baseband AWGN power spectral density. (2 pts)
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2.11 64 VSB - Midterm 1996
Let m(t) be an 8-PAM signal with

m(t) =
∑

k

xkp(t − kT )

where xk = ±1,±3,±5,±7 and p(t) = sinc(2t/T ). Also let ωc >> 2π/T while forming the modulated
signal

x(t) = m(t) cos(ωct) − m̌(t) sin(ωct)

for transmission over an AWGN.

a. Find the Hilbert transform of p(t).

b. Write an expression for m̌(t) and evaluate this expresssion in terms of integer multiple of T/2
sampling instants.

c. If xk = δk for this part (c) only, and find xbb(t) and sketch Xbb(f) and XA(f). δk is defined as the
value 1 for k = 0 and zero for any other integer k.

d. Draw the block diagram of an ML receiver.

e. Describe the action of the detector.

f. Why is this signal called 64-VSB or equivalently 64-SSB?

g. For what SNR is Pe < 10−6?

2.12 Complex Channel - Midterm 1997
A complex channel, derived through the scaling of Figure 2.8, has binary inputs x̃bb(t) in Figure 2.21

below. Let the passband filter be hbb(t)
2 = δ(t) and the SNR = Ēx

σ2 =10 dB and the signal is considered
two dimensional (one real and one imaginary dimension) for computation of Ēx.

Figure 2.21: Baseband channel inputs.

a. write x̃bb,1(t) and x̃bb,2(t) in the form of 4 successive transmissions with symbol rate 1/T . Each
symbol must be of the form (x1 + x2) · ϕ(t − kT ) k = 0, 1, 2, 3. Thus, you must find x1, x2, and
ϕ. (4pts)

b. Find dmin with T = 1. (2 pts)

c. Find Pe for an ML detector with T = 1. (2 pts)

d. For the remainder of this problem, let 1
2hbb(t) = δ(t) + δ(t − 1) and T = 1. Find the baseband-

equivalents channel outputs prior to addition of baseband noise, ñbb(t). (4 pts)
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e. Find dmin. (2 pts)

f. Find Pe with an ML detector, assuming all inputs are equally likely. (2 pts)

g. Has the distortion introduced by the new hbb(t) improved or degraded this system? Why? (3 pts)

2.13 Baseband Equivalents - Midterm 1998
The figure below shows the Fourier transform, H(f), of a bandlimited channel’s impulse response,

h(t). The input to the channel is

x(t) =
√

2

{[∑

k

ak ·ϕ(t − kT )

]
· cos(ωct) −

[∑

k

bk ·ϕ(t − kT )

]
· sin(ωct)

}
. (2.89)

This channel is used for passband transmission with QAM and has AWGN with (2-sided) power spectral
density σ2 = .01.

Figure 2.22: Figure for “baseband equivalents”.

a. Draw Hbb(f). (1 pt)

b. Find hbb(t). (2 pts)

c. Find the input x̃bb(t) as per Figure 2.8 in the class text. (2 pts)

d. Find the complex channel model, including the channel complex impulse response and a numerical
value for the noise power spectral density corresponding to the complex input you found in part
c. The channel output should be the ỹbb(t) of Figure 2.8 in the class text. (2 pts)

e. Find the analytic equivalent hA(t). (2 pts)

f. Write a simple expression for the Hilbert transform of h(t). ȟ(t) =?(2 pts)

2.14 Baseband Channel - Midterm 2000 - 10 pts
The Fourier transform of the impulse response of a channel is shown in the Figure below. The power

spectral density of the additive Gaussian noise at the output of the channel is shown in the second figure
below. You are given the following integrals to avoid any need for doing integration in this problem
(i.e., you can plug the formulae)

∫
x2ebxdx =

ebx

b3

(
b2x2 − 2bx + 2

)
;

∫
xebxdx =

ebx

b2
(bx − 1) ;

∫
ebxdx =

ebx

b
. (2.90)

Throughout this problem, please use the scaling QAM demodulator of Figure 2.10.

a. Draw the Fourier transform of the complex channel, 1
2Hbb(f), that is used in our class to model

the channel. (2 pts)
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Figure 2.23: Channel Response.

Figure 2.24: Noise Power Spectral Density.

b. Find the power spectral density per real dimension of the noise in the complex baseband-equivalent
channel that results from the scaled demodulator. (1 pt)

c. Find the complex-equivalent pulse response (time-domain) of the channel in part a if the trans-
mitter uses the basis functions of QAM with ϕ(t) = 1√

T
· sinc t

T
. (4 pts)

d. If a =
√

T and σ2 = 1, and the transmitter sends 16 SQ QAM with constellation points
[

±3
±1

]
,

what is the lowest upper bound on the best possible SNR for a symbol-by-symbol detector on this
channel? (3 pts)

2.15 Mini-Design - Midterm 2001 - 12 pts
An AWGN with SNR=22 dB has baseband channel transfer function (there is no energy gain or loss

in the channel):

H(f) =
{

1 |f | < 500 kHz
0 |f | ≥ 500 kHz (2.91)

a. Find an integer b̄ for QAM transmission with Pe < 10−6 and compare with value found by the
“gap approximation.” (2 pts)

b. Find the largest possible symbol rate and corresponding data rate. (2 pts)

c. Draw the corresponding signal constellation and label your points with bits. (2 pts) - hint, don’t
concern yourself with clever bit labelings, just do it.

d. Find P̄b and Nb for your design in part b. (3 pts)
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e. Repart part b for PAM transmission on this channel and explain the difference in data rates.
(3 pts)

2.16 Baseband Channel 2 - Midterm 2001 - 12 pts
For the AWGN channel with transfer function shown in Figure 2.25, a transmitted signal cannot ex-

ceed 1 mW (0 dBm) and the power spectral density is also limited according to Sx(f) ≤-83 dBm/Hz(two-
sided psd). The two-sided noise power spectral density is σ2 =-98 dBm/Hz. The carrier frequency is
fc =100 MHz for QAM transmission. The probability of error is Pe = 10−6.

Figure 2.25: Channel Response.

a. Find the baseband channel model, 1
2
Hbb(f), for the scaled demodulator of Chapter 2. (2 pts)

b. Find the largest symbol rate that can be used with the 100 MHz carrier frequency? (1 pts)

c. What is the maximum signal power at the channel output with QAM? (2 pts)

d. What QAM data rate can be achieved with the symbol rate of part b? (2 pts)

e. Change the carrier frequency to a value that allows the best QAM data rate. (2 pts)

f. What is the new data rate for your answer in part e? (3 pts)

2.17 Complex Channel and Design- Midterm 2003 - 15 pts
Let xkrepresent the successive independent transmitted symbols of a QAM constellation that can

have only an integer number of bits for each symbol and for which each message is equally likely. Also

let the pulse response of a filtered AWGN channel be p(t) =
√

1
T · sinc

(
t
T

)
where 1

T = 5 Mhz is the
symbol rate of the QAM transmission. The carrier frequency is 100 MHz. The transmitted signal has
Ēx = 1.2 and the AWGN psd is σ2 = .01. An expression for the modulated signal is

x(t) = <

{∑

k

xk · p(t − kT ) · eωct

}
. (2.92)

Define g(t) = p(t) · eωct.

a. Find xA(t) and xbb(t). (2 pts)

b. Use the gap approximation to determine the number of bits per dimension, data rate, and the
number of bits/second/Hz that can be transmitted on this channel with P̄e ≤ 10−6. (3 pts)

c. Suppose Ak = xk · eωckT is the actual message symbol sequence of interest for the rest of this
problem. How do your answers in part b change (if at all)? Why? (2 pts)

d. Find the analytic equivalent of the channel output, yA(t) in terms of only the message sequence
Ak and g(t) without any direct use of the carrier frequency. (2 pts)

e. Draw an optimum (MAP) detector for Ak that does not use the carrier frequency directly. (3 pts)
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f. Augment your answer in part e with a simple rotation that provides the MAP detector for xk.
(1 pt)

g. This approach is used in some communications systems where the symbol rate and carrier frequency
can be co-generated from the same oscillator, hence the knowledge of the symbol rate in the receiver
tacitly implies then also knowing the carrier frequency. This is why the carrier was eliminated in
the receiver of part e. Suggest a receiver implementation problem with this approach in general to
replace QAM systems that would be used in transmission with symbol rates of up to 10 MHz and
carriers above 1 GHz. (Hint - what does g(t) look like?) (2 pts)

2.18 Complex Channel and Modulation - Midterm 2005 - 15 pts
A 16 QAM constellation is used to transmit a message over a filtered AWGN with SNR = Ēx

σ2 = 20

dB. The QAM symbol is given by
√

2
T ·

[
x1 · f(t) + x2f̌ (t)

]
where f(t) = sinc

(
2t
T

)
. The real channel

filter in has the shape shown in Figure 2.26 and is zero outside the frequency band of (−1/T, 1/T ).

Figure 2.26: Channel Response.

a. Show f(t) = sinc
(

t
T

)
·cos(πt) using frequency-domain arguments. Then find the Hilbert Transform

f̌ (t). (2 pts)

b. Find a quadrature representation for x(t) and the appropriate carrier frequency fc. (2 pts)

c. Find xbb(t) and xA(t). (2 pts)

d. Find h(t), hbb(t), and hA(t). Hint: multiplication of a transfer function by the ideal lowpass filter
is the same as convolving with a sinc function, which may be useful in converting the obvious
frequency-domain answers to the time domain. (2 pts)

e. For the scaled phase splitter of Chapter 2, find the output ybb(t). (2 pts)

f. Design (draw) an optimum receiver for this single transmitted message using only one sampling
device, one matched filter, and one adder. Draw the decision regions for a single complex value
that ultimately emanates from your receiver. (3 pts)

g. Calculate Pe for this optimum receiver. (2 pts)
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Appendix A

Hilbert Transform

The Hilbert transform is a linear operator that shifts the phase of a sinusoid by 90o:

Definition A.0.1 (Hilbert Transform) The Hilbert Transform of x(t) is denoted x̌(t) and
is given by

x̌(t) = h̄(t) ∗ x(t) =
∫ ∞

−∞

x(u)
π(t − u)

du , (A.1)

where

h̄(t) =
{

1
πt t 6= 0
0 t = 0 . (A.2)

The Fourier Transform of h̄(t) is

H(ω) =
∫ ∞

−∞

e−ωt

πt
dt (A.3)

=
∫ ∞

−∞

− sin ωt

πt
dt (A.4)

=
∫ ∞

−∞

− sin πu

πu
sgn(ω)du (A.5)

= −

[∫ ∞

−∞
sinc(u)du

]
sgn(ω) (A.6)

= −sgn(ω) (A.7)

Equation (A.7) shows that a frequency component at a positive frequency is shifted in phase by −90o,
while a component at a negative frequency is shifted by +90o. Summarizing

X̌(ω) = −sgn(ω)X(ω) . (A.8)

Since |H(ω)| = 1 ∀ ω 6= 0, then |X(ω)| = |X̌(ω)|, assuming X(0) = 0. This text only considers passband
signals with no energy present at DC (ω = 0). Thus, the Hilbert Transform only affects the phase and
not the magnitude of a passband signal.

A.1 Examples

Let
x(t) = cos(ωct) =

1
2
(eωct + e−ωct) , (A.9)

then
x̌(t) =

1
2
(−eωct + e−ωct) =

1
2

(eωct − e−ωct) = sin(ωct) . (A.10)
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Let
x(t) = sin(ωct) =

1
2

(eωct − e−ωct) , (A.11)

then
x̌(t) =

1
2j

(−eωct − e−ωct) = −
1
2
(eωct + e−ωct) = − cos(ωct) . (A.12)

Note
ˇ̌x(t) = h̄(t) ∗ h̄(t) ∗ x(t) = −x(t) . (A.13)

since (−jsgn(ω))2 = −1 ∀ ω 6= 0. A correct interpretation of the Hilbert transform is that every sinusoial
component is passed with the same amplitude, but with its phase reduced by 90 degrees.

A.2 Inverse Hilbert

The inverse Hilbert Transform is easily specified in the frequency domain as

H−1(ω) = sgn(ω) , (A.14)

or then

h̄−1(t) = −h̄(t) =
{

− 1
πt t 6= 0

0 t = 0 . (A.15)

A.3 Hilbert Transform of Passband Signals

Given a passband signal x(t), form the quadrature decomposition

x(t) = xI(t) cos (ωct) − xQ(t) sin (ωct) (A.16)

and transform x(t) into the frequency domain

X(ω) =
1
2

[XI (ω + ωc) + XI(ω − ωc)] −
1
2

[XQ(ω − ωc) − XQ(ω + ωc)] . (A.17)

Equation A.17 shows that if X(ω) = 0 ∀ |ω| > 2ωc then XI(ω) = 0 and XQ(ω) = 0 ∀ |ω| > ωc.1 Using
this fact the Hilbert transform X̌(ω) is given by

X̌(ω) =


2
[XI(ω + ωc) − XI (ω − ωc)] +

1
2

[XQ(ω − ωc) + XQ(ω + ωc)] . (A.18)

The inverse Fourier Transform of X̌(ω) then yields

x̌(t) = xI(t) sin (ωct) + xQ(t) cos (ωct) = ={xA(t)} , (A.19)

where = denotes the imaginary part.

1Recall xI(t) and xQ(t) are real signals.
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Appendix B

Passband Processes

This appendix investigates properties of the correlation functions for a WSS passband random process
x(t) in its several representations. For a brief introduction to the definitions of random processes see
Appendix C.

B.1 Hilbert Transform

Let x(t) be a WSS real-valued random process and x̌(t) = h̄(t) ∗ x(t) be its Hilbert transform. By
Equation (C.8), the autocorrelation of x̌t is

rx̌(τ ) = h̄(τ ) ∗ h̄∗(−τ ) ∗ rx(τ ) = rx(τ ). (B.1)

Since |H(ω)|2 = 1 ∀ ω 6= 0, and assuming SX (0) = 0, then

Sx̌(ω) = Sx(ω) . (B.2)

Thus, a WSS random process and its Hilbert Transform have the same autocorrelation function and the
same power spectral density.

By Equation (C.13)

rx̌,x(τ ) = h̄(τ ) ∗ rx(τ ) = řx(τ ) (B.3)
rx,x̌(τ ) = h̄∗(−τ ) ∗ rx(τ ) = −h̄(τ ) ∗ rx(τ ) = −řx(τ ) . (B.4)

The cross correlation between the random process x(t) and its Hilbert transform x̌(t) is the Hilbert
transform of the autocorrelation function of the random process x(t).

Note also that

rx̌,x(τ ) = h̄(τ ) ∗ rx(τ ) = h̄∗(τ ) ∗ rx(τ ) = h̄∗(τ ) ∗ rx(−τ ) = r∗x,x̌(−τ ) = rx,x̌(−τ ) . (B.5)

By using Equations (B.3), (B.4) and (B.5),

rx̌,x(τ ) = řx(τ ) = −rx,x̌(τ ) = −rx̌,x(−τ ) . (B.6)

Equation (B.6) implies that rx̌,x(τ ) is an odd function, and thus

rx̌,x(0) = 0 . (B.7)

That is, a real-valued random process and its Hilbert Transform are uncorrelated at any particular point
in time.
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B.2 Quadrature Decomposition

The quadrature decomposition for any real-valued WSS passband random process and its Hilbert trans-
form is

x(t) = xI(t) cos ωct − xQ(t) sin ωct (B.8)
x̌(t) = xI(t) sin ωct + xQ(t) cos ωct. (B.9)

The baseband equivalent complex-valued random process is

xbb(t) = xI(t) + xQ(t) (B.10)

and the analytic equivalent complex-valued random process is

xA(t) = x(t) + x̌(t) = xbb(t)ejωct . (B.11)

The original random process can be recovered as

x(t) = <{xA(t)} . (B.12)

The autocorrelation of xA(t) is

rA(τ ) = E {xA(t)x∗
A(t − τ )} (B.13)

= 2 (rx(τ ) + řx(τ )) . (B.14)

The right hand side of Equation (B.14) is twice the analytic equivalent of the autocorrelation function
rx(τ ). The power spectral density is

SA(ω) = 4 · Sx(ω) ω > 0 . (B.15)

The functions in the quadrature decomposition of x(t) also have autocorrelation functions:

rI(τ ) ∆= E {xI(t)x∗
I (t − τ )} (B.16)

rQ(τ ) ∆= E
{
xQ(t)x∗

Q(t − τ )
}

(B.17)

rIQ(τ ) ∆= E
{
xI(t)x∗

Q(t − τ )
}

(B.18)

One determines

rx(τ ) = E {x(t)x∗(t − τ )} (B.19)
= rI(τ ) cos ωct cos ωc(t − τ )
− rIQ(τ ) cos ωct sin ωc(t − τ )
− rQI(τ ) sin ωct cos ωc(t − τ )
+ rQ(τ ) sin ωct sin ωc(t − τ )

Standard trigonometric identities simplify (B.19) to

rx(τ ) =
1
2

[rI(τ ) + rQ(τ )] cos ωcτ (B.20)

+
1
2

[rIQ(τ ) − rQI(τ )] sin ωcτ

−1
2

[rQ(τ ) − rI(τ )] cos ωc(2t − τ )

−1
2

[rIQ(τ ) + rQI(τ )] sin ωc(2t − τ )
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Strictly speaking, most modulated waveforms are WS cyclostationary with period Tc = 2π
ωc

, i.e.
E [x(t)x∗(t − τ )] = rx(t, t − τ ) = rx(t + Tc, t + Tc − τ ) (See Appendix C). For cyclostationary ran-
dom processes a time-averaged autocorrelation function of one variable τ can be defined by rx(τ ) =
1/Tc

∫ Tc/2

−Tc/2
rx(t, t − τ )dt, and this new time-averaged autocorrelation function will satisfy the proper-

ties derived thus far in this section. The next set of properties require that the random process to
be WSS, not WS cyclostationary – or equivalently the time-averaged autocorrelation function rx(τ ) =
1/Tc

∫ Tc/2

−Tc/2 rx(t, t − τ )dt can be used. An example of a WSS random process is AWGN. Modulated
signals often have equal energy inphase and quadrature components with the inphase and quadrature
signals derived independently from the incoming bit stream; thus, the modulated signal is then WSS.

For x(t) to be WSS, the last two terms in (B.20) must equal zero. Thus, rI(τ ) = rQ(τ ) and rIQ(τ ) =
−rQI(τ ) = −rIQ(−τ ). The latter equality shows that rIQ(τ ) is an odd function of τ and thus rIQ(0) = 0.
For x(t) to be WSS, the inphase and quadrature components of x(t) have the same autocorrelation and
are uncorrelated at any particular instant in time. Substituting back into Equation B.20,

rx(τ ) = rI(τ ) cos(ωcτ ) − rQI(τ ) sin(ωcτ ) (B.21)

Equation B.21 expresses the autocorrelation rx(τ ) in a quadrature decomposition and thus

řx(τ ) = rI(τ ) sin(ωcτ ) + rQI(τ ) cos(ωcτ ) (B.22)

Further algebra leads to

rbb(τ ) = E {xbb(t)x∗
bb(t − τ )} (B.23)

= 2 (rI(τ ) + rQI(τ )) (B.24)
rA(τ ) = rbb(τ )eωcτ (B.25)

The power spectral density is
SA(ω) = Sbb(ω − ωc) . (B.26)

If Sx(ω) is symmetric about ωc, then Sbb(ω) is symmetric about ω = 0 (recall that the spectrum
SA(ω) is a scaled version of the positive frequencies of SX (ω) and Sbb(ω) is SA(ω) shifted down by
ωc). In this case rbb(τ ) is real, and using Equation B.24, rQI(τ ) = 0. Equivalently, the inphase and
quadrature components of a random process are uncorrelated at any lag τ (not just τ = 0) if the power
spectral density is symmetric about the carrier frequency. Finally,

rx(τ ) =
1
2
<{rbb(τ )eωcτ} =

1
2
<{rA(τ )} . (B.27)

If x(t) is a random modulated waveform, by construction it is usually true that rI(τ ) = rQ(τ ) and
rIQ(τ ) = −rQI (τ ) = 0, so that the constructed x(t) is WSS. For AWGN, n(t) is usually WSS so that
rI(τ ) = rQ(τ ) and rIQ(τ ) = −rQI (τ ) = 0. When a QAM waveform is such that rIQ(τ ) 6= −rQI (τ ) or
rI(τ ) 6= rQ(τ ), then x(t) is WS cyclostationary with period π/ωc.
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Appendix C

Random Processes (By Dr. James
Aslanis)

This appendix briefly outlines the fundamental definitions of random processes used in this textbook.
Random variables and processes are specified by upper-case letters in this appendix, and the correspond-
ing lower case letters are used as variables of integration. Other sections and appendices relax notation
and use the lower-case notation for both.

The natural mathematical construct to describe a noisy communication signal is a random process.
Random processes are simply a generalization of random variables. Consider a single sample of a random
process, which is described by a random variable X with probability density PX(x). (Often the random
process is assumed to be Gaussian but not always). This random variable only characterizes the random
process for a single instant of time. For a finite set of time instants, a random vector X = [Xt1 , . . . , Xtn]
with a joint probability density function PX (x) describes the noise. Extension to a countably infinite
set of random variables, indexed by i, defines a discrete-time random sequence.

Definition C.0.1 (Discrete-Time Random Sequence) A Discrete-Time Random Sequence
{Xi} is a countably infinite, indexed set of random variables described by a joint density func-
tion PX (x) where X = [Xti, . . . , Xti+n ], where i is an integer and n is a positive integer.

The random variables in a random process need not be independent nor identically distributed,
although the random variables are all defined on the same sample space. The probability density
functions that define a random process do depend on the indices. If the index i indicates time, then the
probability densities are time-varying. Similarly, statistical averages, i.e. E[f(Xt)], become functions of
the index as well. These statistical averages, also known as ensemble averages, should not be confused
with averaging over the time index (sometimes referred to as time averaging). For example the mean
value of a random variable associated with the tossing of a die is approximated by averaging the values
over many independent tosses. The time average is said to converge to the ensemble average (a property
also referred to as mean ergodic). In a random process, each random variable in the collection of
random variables may have a different probability density function. Time averaging over successive
samples may not yield any information about ensemble averages.

In a communication system, we often observe a realization (function of time) of the random process,
also called a sample function. For repetition of the experiment, a different sample function is observed.
Thus, the random process Xt also can be considered an ensemble of sample functions. Statistical
averages are computed over the ensemble of sample functions. For certain processes the time averages
(i.e. averaging over a single sample function the sequential values in time) may approximate well the
ensemble averages.

Random processes are classified by statistical properties that their density functions obey, the most
important of which is stationarity.
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C.1 Stationarity

Definition C.1.1 (Strict Sense Stationarity) A random process Xt is called strict sense
stationary (SSS) if the joint probability density function

PXt1 ,...,Xtn
(xt1 , . . . , xtn) = PXt1+t,...,Xtn+t(xt1+t, . . . , xtn+t) ∀ n, t, {t1, . . . , tn} . (C.1)

Roughly speaking the statistics of Xt are invariant to a time shift; i.e. the placement of the origin t = 0
is irrelevant.

This text next considers commonly calculated functions of a random process: These functions en-
capsulate properties of the random processes, and for linear systems we can sometimes calculate these
functions for processes without knowing the exact statistics of the process. Certain random processes,
such as stationary Gaussian processes, are completely described by a collection of these functions.

Definition C.1.2 (Mean) The mean of a random process Xt is

E(Xt) =
∫ ∞

−∞
xtPXt(xt)dxt

∆= µX(t) . (C.2)

In general, the mean is a function of the index t.

Definition C.1.3 (Autocorrelation) The autocorrelation of a random process Xt is

E(Xt1X
∗
t2) =

∫ ∞

−∞
xt1x

∗
t2PXt1Xt2

(xt1 , xt2)dxt1dxt2
∆= rX (t1, t2) (C.3)

In general, the autocorrelation is a two-dimensional function of the pair {t1, t2}. For a stationary process,
the autocorrelation is a one-dimensional function of the time difference t1 − t2 only:

E(Xt1X
∗
t2) = rX (t1 − t2) = rX (τ ) (C.4)

The stationary process’ autocorrelation also satisfies a Hermitian property rX(τ ) = r∗X (−τ ).
Using the mean and autocorrelation functions, also known as the first- and second-order statistics,

engineers often define a weaker form of stationarity.

Definition C.1.4 (Wide Sense Stationarity) A random process Xt is called wide sense
stationary (WSS) if

a. E(Xt) = constant,
b. E(Xt1X

∗
t2

) = rX(t1 − t2), i.e. a function of the time difference only.

One can show that SSS ⇒ WSS, but WSS 6⇒ SSS. Often, analysis of random processes only considers
their first and second order statistics. Such results of course do not reveal anything about the higher
order statistics of the random process; however, in one special case the stationary random process is
completely defined by the lower order statistics. In particular,

Definition C.1.5 (Gaussian Random Process) The joint probability density function of
a stationary real Gaussian random process for any set of n indices {t1, . . . , tn} is

PX (x) =
1

(2π)n/2(det Λ)1/2
exp

[
−1

2
(x − µ)Λ−1(x − µ)′

]
, (C.5)

where the mean vector is given by µ = E[X ], and the covariance matrix is defined as Λ =
E[(X − µ)′(X − µ)].

A complex Gaussian random variable has independent Gaussian random variables in both
the real and imaginary parts, both with the same variance, which is half the variance of the
complex random variable. Then, the distribution is

PX (x) =
1

(π)n(det Λ)
exp

[
−(x − µ)Λ−1(x − µ)′

]
. (C.6)
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For a Gaussian random process, the set of random variables {Xt1 , . . . , Xtn} are jointly Gaussian. A
Gaussian random process also satisfies the following two important properties:

a. The output response of a linear time-invariant system to a Gaussian input is also a Gaussian
random process.

b. A WSS, real-valued, Gaussian random process is SSS.

Much of the analysis in this textbook will consider Gaussian random processes passed through linear
time-invariant systems. As a result of the properties listed above, the designer only requires the mean
and autocorrelation functions of these processes to characterize them completely. Fortunately, one
can calculate the effect of linear time-invariant systems on these functions without explicitly using the
probability densities of the random process.

In particular, for a linear time-invariant system defined by an impulse response h(t), the mean of the
output random process Yt is

µY (t) = µX(t) ∗ h(t) . (C.7)

The autocorrelation of the output can also be found as

rY (t + τ, t) = rX(t + τ, t) ∗ h(t + τ ) ∗ h∗(−t) . (C.8)

In addition, many analyses use the correlation between the input and output random processes:

Definition C.1.6 (Cross-correlation) The cross-correlation between the random pro-
cesses Xt and Yt is given by

E(Xt1Y
∗
t2)

∆= rXY (t1, t2) . (C.9)

For a jointly WSS random processes, the cross-correlation only depends on the time difference

rXY (t1, t2) = rXY (t1 − t2) = rXY (τ ) . (C.10)

Note that rXY (τ ) does not satisfy the Hermitian property that the autocorrelation obeys, but one can
show that

rXY (τ ) = r∗Y X (−τ ) . (C.11)

As an exercise, the reader should verify that

rXY (τ ) = rX(τ ) ∗ h∗(−τ ) (C.12)
rY X(τ ) = rX(τ ) ∗ h(τ ) (C.13)

A more general form of stationarity is cyclostationarity, wherein the statistics of the random
process are invariant only to specific shifts in the indices.

Definition C.1.7 (Strict Sense Cyclostationarity) A random process is strict sense
cyclostationary if the joint probability density function satisfies

PXt1 ,...,Xtn
(xt1 , . . . , xtn) = PXt1+T ,...,Xtn+T (xt1+T , . . . , xtn+T ) ∀ n, {t1, . . . , tn}, (C.14)

where T is called the period of the process.

That is, Xt+kT is statistically equivalent to Xt ∀ t, k. Cyclostationarity accounts for the regularity
in communication transmissions that repeat a particular operation at specific time intervals; however,
within a particular time interval, the statistics are allowed to vary arbitrarily. As with stationarity, a
weaker form for cyclostationarity that depends only on the first and second order statistics of the random
process is.

Definition C.1.8 (Wide Sense Cyclostationarity) A random process is wide sense
cyclostationary if
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a. E(Xt) = E(Xt+kT ) ∀ t, k.

b. rX(t + τ, t) = rX(t + τ + kT, t + kT ) ∀ t, τ, k.

Thus, the mean and autocorrelation functions of a WS cyclostationary process are periodic functions
with period T . Many of the random signals in communications, such as an ensemble of modulated
waveforms, satisfy the WS cyclostationarity properties.

The periodicity of a WS cyclostationary random process would complicate the study of modulated
signals without use of the following convenient property. Given a WS cyclostationary random process
Xt with period T , the random process Xt+θ is WSS if θ is a uniform random variable over the interval
[0, T ]. Thus, we often shall include (or assume) a random phase θ to yield a WSS random process.

Alternatively for a WS cyclostationary random process, we can define a time average autocorrelation
function.

Definition C.1.9 (Time Average Autocorrelation) The time average autocorrela-
tion of a WS cyclostationary random process Xt is

r̄X(τ ) =
1
T

∫ T/2

−T/2

rX(t + τ, t)dt . (C.15)

Since the autocorrelation function rX(t + τ, t) is periodic, one could integrate over any closed interval of
length T in the preceding equation.

As in the study of deterministic signals and systems, frequency domain descriptions are often useful
for analyzing random processes. First, this appendix continues with the definitions for deterministic
signals.

Definition C.1.10 (Energy Spectral Density) The Energy Spectral Density of a fi-
nite energy deterministic signal x(t) is |X(ω)|2 where

X(ω) =
∫ ∞

−∞
x(t)e−jωtdt

∆= F{x(t)} (C.16)

is the Fourier transform of x(t). Thus, the energy is calculable as

Ex
∆=

∫ ∞

−∞
|x(t)|2dt =

1
2π

∫ ∞

−∞
|X(ω)|2dω < ∞ (C.17)

If the finite energy signal x(t) is nonzero for only a finite time interval, say T , then the time average
power in the signal equals Px = Ex/T .

Communication signals are usually modeled as repeated patterns extending from (−∞,∞), in which
case the energy is infinite, although the time average power may be finite.

Definition C.1.11 (Power Spectral Density) The power spectral density of a finite
power signal defined as

Sx(ω) = lim
T→∞

|XT (ω)|2

T
(C.18)

where XT (ω) = F(xT (t)) is the Fourier transform of the truncated signal

xT (t) = x(t) |t| < T
2

0 otherwise (C.19)

Thus, the time average power is calculable as Px
∆= limT→∞

1
T

∫ T/2

−T/2
|x(t)|2dt =

∫ ∞
−∞ Sx(ω)dω <

∞

For deterministic signals, the power Px is a time-averaged quantity.
For a random process, we cannot simply take its Fourier transform to specify the power spectral

density. Even if the integral of the random process is well-defined (and we do not present the requisite
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mathematical tools in this text), the result would be another random process. Ensemble averages are
required for frequency-domain analysis.

For a random process Xt, the ensemble average power, PXt

∆= E[|Xt|2], may vary instantaneously
over time. For a WSS random process, however, PXt = PX is a constant.

Definition C.1.12 (Power Spectral Density) For a WSS continuous-time random pro-
cess Xt, the power spectral density is

SX (ω) = F{rx(τ )}. (C.20)

One can show that
∫ ∞
−∞ SX (ω)dω = PX .

For a WS cyclostationary random process Xt the autocorrelation function rX (t + τ, t), for a fixed
time lag τ , is periodic in t with period T . Consequently the autocorrelation function can be expanded
using a Fourier series.

rX (t + τ, t) =
∞∑

n=−∞
γn(τ )ej2πnt/T , (C.21)

where γn(τ ) are the Fourier coefficients

γn(τ ) =
1
T

∫ T/2

−T/2

rX (t + τ, t)e−j2πnt/Tdt. (C.22)

The time average autocorrelation function is then

r̄X(τ ) = γ0(τ ). (C.23)

The average power for the WS cyclostationary random process is

PXt =
1
T

∫ T/2

−T/2

E[|Xt|2]dt = r̄X(0) = γ0(0) =
∫ ∞

−∞
G0(f)df (C.24)

where G0(f) is the Fourier transform of the n = 0 Fourier coefficient

F{γ0(τ )} = G0(f) = F{r̄X(τ )}. (C.25)

The function G0(f) is the power spectral density of the WS cyclostationary random process Xt associated
with the time average autocorrelation r̄X(τ ).

For a nonstationary random process, the average power must be calculated by both time and ensemble
averaging, i.e. PXt = limT→∞

1
T

∫ T/2

−T/2
E[|Xt|]2dt.

C.2 Linear Systems

For the linear system defined by y(t) = h(t) ∗ x(t), with a stationary input x(t) and fixed deterministic
impulse response h(t), the following relationships are easily proved:

rY Y (τ ) = h(τ ) ∗ h∗(−τ ) ∗ rXX (τ ) (C.26)

and thus
SY Y (ω) = |H(ω)|2SXX (ω) . (C.27)

These same relations hold in discrete time also.
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