Homework \#1 (40 + 1 pts)

Solutions

1. (1.1) Our First Constellation.
(a) (2 pts) The following two basis functions are orthonormal,

$$
\begin{aligned}
\int_{0}^{1} \phi_{1}(t) \phi_{2}(t) d t & =\int_{0}^{1} 2 \sin (2 \pi t) \cos (2 \pi t) d t=\int_{0}^{1} \sin (4 \pi t) d t
\end{aligned}=0
$$

Figure 1: Signal Constellation.
(b) ($\mathbf{2} \mathbf{~ p t s})$ The signal constellation is shown on figure 1 .
(c) i. ($\mathbf{2} \mathbf{~ p t s})$ For the case where all signals are equally likely, the average energy $\mathcal{E}_{\boldsymbol{x}}$ is given by,

$$
\mathcal{E}_{\boldsymbol{x}}=\frac{1}{4}(2+18+10+10)=10
$$

And the average energy per dimension shall be,

$$
\overline{\mathcal{E}}_{\boldsymbol{x}}=10 / 2=5
$$

ii. ($\mathbf{2} \mathbf{~ p t s})$ For the case where

$$
p\left(x_{0}\right)=p\left(x_{4}\right)=p\left(x_{8}\right)=p\left(x_{12}\right)=\frac{1}{8}
$$

and

$$
p\left(x_{i}\right)=\frac{1}{24} \quad i=1,2,3,5,6,7,9,10,11,13,14,15
$$

The average energy is simply,

$$
\begin{aligned}
\mathcal{E}_{\boldsymbol{x}} & =\frac{4}{8}(2)+\frac{4}{24}(10+10+18) \\
& =\frac{22}{3} \\
\overline{\mathcal{E}}_{\boldsymbol{x}} & =\frac{11}{3}
\end{aligned}
$$

(d) (2 pts) Note that $\left(\phi_{1}(t), \phi_{2}(t), \phi_{3}(t)\right)$ forms an orthonormal basis. The signal constellation \mathcal{Y} lives in a dimension one bigger than that of \mathcal{X}, and is a translation of \mathcal{X}. The corresponding energy is then,

$$
\begin{aligned}
\mathcal{E}_{\boldsymbol{y}} & =\sum_{i=0}^{15}\left(\left\|\boldsymbol{x}_{i}\right\|^{2}+16\right) p_{X}(i) \\
& =\mathcal{E}_{\boldsymbol{x}}+16=26
\end{aligned}
$$

2. (1.2) Inner Products.
(a) (4 pts) By using the following trigonometric identity,

$$
\cos (a+b)=\cos (a) \cos (b)-\sin (a) \sin (b)
$$

the signals $x_{0}(t), x_{1}(t), x_{2}(t)$ can be written as,

$$
\begin{aligned}
x_{0}(t) & =\sqrt{2}\left[\phi_{1}(t) \cos \left(\frac{\pi}{6}\right)-\phi_{2}(t) \sin \left(\frac{\pi}{6}\right)\right] \\
x_{1}(t) & =\sqrt{2}\left[\phi_{1}(t) \cos \left(\frac{5 \pi}{6}\right)-\phi_{2}(t) \sin \left(\frac{5 \pi}{6}\right)\right] \\
x_{2}(t) & =\sqrt{2}\left[\phi_{1}(t) \cos \left(\frac{\pi}{2}\right)+\phi_{2}(t) \sin \left(\frac{\pi}{2}\right)\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& \phi_{1}(t)= \begin{cases}\sqrt{\frac{2}{T}}\left(\cos \left(\frac{2 \pi t}{T}\right)\right) & \text { if } t \epsilon[0, T] \\
0 & \text { otherwise }\end{cases} \\
& \phi_{2}(t)= \begin{cases}\sqrt{\frac{2}{T}}\left(\sin \left(\frac{2 \pi t}{T}\right)\right) & \text { if } t \epsilon[0, T] \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

are indeed an orthonormal basis,

$$
\begin{aligned}
\int_{0}^{T} \phi_{1}(t) \phi_{2}(t) d t & =\int_{0}^{T} \frac{2}{T} \sin \left(\frac{2 \pi t}{T}\right) \cos \left(\frac{2 \pi t}{T}\right) d t=\int_{0}^{T} \sin \left(\frac{4 \pi t}{T}\right) d t=0 \\
\int_{0}^{T} \phi_{1}^{2}(t) d t & =\int_{0}^{T} \frac{2}{T} \cos ^{2}\left(\frac{2 \pi t}{T}\right) d t=\int_{0}^{T} \frac{1}{T}\left[1+\cos \left(\frac{4 \pi t}{T}\right)\right] d t=1 \\
\int_{0}^{T} \phi_{2}^{2}(t) d t & =\int_{0}^{T} \frac{2}{T} \sin ^{2}\left(\frac{2 \pi t}{T}\right) d t=\int_{0}^{T} \frac{1}{T}\left[1-\cos \left(\frac{4 \pi t}{T}\right)\right] d t=1
\end{aligned}
$$

(b) (3 pts) From part (a) it is easily seen that the data symbols are,

$$
\begin{aligned}
& x_{0}=\left[\begin{array}{ll}
\sqrt{\frac{3}{2}} & -\frac{\sqrt{2}}{2}
\end{array}\right] \\
& x_{1}=\left[\begin{array}{ll}
-\sqrt{\frac{3}{2}} & -\frac{\sqrt{2}}{2}
\end{array}\right] \\
& x_{2}=\left[\begin{array}{ll}
0 & \sqrt{2}
\end{array}\right]
\end{aligned}
$$

(c) ($\mathbf{3} \mathbf{p t s}$) From the conservation of inner product,

$$
\langle x(t), y(t)\rangle=\langle\boldsymbol{x}, \boldsymbol{y}\rangle
$$

we obtain,
i. $\left\langle x_{0}(t), x_{0}(t)\right\rangle=\frac{3}{2}+\frac{1}{2}=2$.
ii. $\left\langle x_{0}(t), x_{1}(t)\right\rangle=-\frac{3}{2}+\frac{1}{2}=-1$
iii. $\left\langle x_{0}(t), x_{2}(t)\right\rangle=-1$
3. (1.3) Multiple sets of basis functions.
(a) (2 pts) The functions $u(t)$ and $v(t)$ are given by,

$$
u(t)=\left\{\begin{array}{ll}
\frac{2}{3} & \text { if } t \epsilon[0,2.25] \\
0 & \text { if } t \epsilon[2.25,6.75] \\
\frac{2}{3} & \text { if } t \epsilon[6.75,9]
\end{array} \quad v(t)= \begin{cases}1 & \text { if } t \epsilon[0,2.25] \\
-\frac{1}{3} & \text { if } t \epsilon[2.25,6.75] \\
1 & \text { if } t \epsilon[6.75,9]\end{cases}\right.
$$

See figure 2.
(b) (3 pts) The new basis functions are,

$$
\phi_{1}(t)=\left\{\begin{array}{ll}
\frac{\sqrt{2}}{3} & \text { if } t \epsilon[0,2.25] \\
0 & \text { if } t \epsilon[2.25,6.75] \\
\frac{\sqrt{2}}{3} & \text { if } t \epsilon[6.75,9]
\end{array} \quad \phi_{2}(t)= \begin{cases}0 & \text { if } t \epsilon[0,2.25] \\
\frac{\sqrt{2}}{3} & \text { if } t \epsilon[2.25,6.75] \\
0 & \text { if } t \epsilon[6.75,9]\end{cases}\right.
$$

See figure 3.
And obviously, we have

$$
v=\left[\frac{3}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right]
$$

Figure 2: $u(t)$ and $v(t)$

Figure 3: New Basis function
4. (1.4) Minimal orthonormalization with MATLAB.
(a) (2 pts) MATLAB is used to generate the new set of basis functions, $\mathrm{A}=$

1	2	3	4	5	6	7	8
1	3	5	7	9	11	13	15
2	4	6	8	10	12	14	16
0	1	0	1	0	1	0	1
0	2	0	2	0	2	0	2
2	4	2	4	2	4	2	4
$=r t h(A)$							

0.3394	0.0323	0.1124
0.6190	0.2214	-0.3152
0.6788	0.0647	0.2249
0.0338	-0.2450	-0.3479
0.0677	-0.4900	-0.6959
0.1873	-0.8035	0.4563

Note that the Q matrix is not unique. MATLAB normally will give the above answer, except may be for a sign change of some of the basis vectors.
(b) ($\mathbf{2} \mathbf{~ p t s}$)The number of basis functions needed is 3 . In the time domain, the new basis functions $\hat{\phi}_{i}(t), \mathrm{i}=1,2,3$, are given by,

$$
\left[\begin{array}{lll}
\hat{\phi}_{1}(t) & \hat{\phi}_{2}(t) & \hat{\phi}_{3}(t)
\end{array}\right]=\phi Q
$$

where $\phi=\left[\phi_{1}(t) \phi_{2}(t) \phi_{3}(t) \phi_{4}(t) \phi_{5}(t) \phi_{6}(t)\right]$.
(c) ($\mathbf{1} \mathbf{~ p t) ~ T h e ~ n e w ~ m a t r i x ~} \hat{A}$ which gives the data symbol representation for the original modulated waveforms using the smaller set of basis functions found in (b) is given by,

```
A_hat=Q'*A
A_hat =
        Columns 1 through 8
\begin{tabular}{rrrrrrrr}
2.6907 & 6.1696 & 8.5609 & 12.0398 & 14.4311 & 17.9100 & 20.3013 & 23.7802 \\
-1.2239 & -3.4513 & -0.0148 & -2.2422 & 1.1943 & -1.0331 & 2.4034 & 0.1760 \\
1.1235 & 0.1561 & 0.8430 & -0.1244 & 0.5625 & -0.4049 & 0.2820 & -0.6853
\end{tabular}
```

This problem can also be done using the $\mathbf{q r}$ function in MATLAB, which gives us the answer to all the parts at once.
5. (1.5) Decision rules for binary channels.
(a) ($\mathbf{5} \mathbf{~ p t s}$) The Binary Symmetric Channel (BSC).

For equally likely inputs the MAP and ML decision rules are identical. In each case we wish to maximize $p_{\boldsymbol{y} \mid \boldsymbol{x}}\left(y \mid x_{i}\right)$ over the possible choices for x_{i}. The decision rules are shown below,

$$
\begin{array}{r}
p<\frac{1}{2} \Rightarrow \hat{X}=Y \\
p>\frac{1}{2} \Rightarrow \hat{X}=1-Y
\end{array}
$$

(b) (5 pts) The Binary Erasure Channel (BEC).

Again, since we have equiprobable signals, the MAP and ML decision rules are the same. The decision rules are as follows,

$$
\begin{aligned}
& p_{1}<p_{2}<\frac{1}{2} \Rightarrow \hat{X}= \begin{cases}Y & \text { if } \mathrm{Y}=0,1 . \\
1 & \text { if } \mathrm{Y}=2 .\end{cases} \\
& p_{2}<p_{1}<\frac{1}{2} \Rightarrow \hat{X}= \begin{cases}Y & \text { if } \mathrm{Y}=0,1 . \\
0 & \text { if } \mathrm{Y}=2 .\end{cases}
\end{aligned}
$$

