Homework #1 (40 + 1 pts)Solutions

- 1. (1.1) Our First Constellation.
 - (a) (2 pts) The following two basis functions are orthonormal,

$$\int_0^1 \phi_1(t)\phi_2(t)dt = \int_0^1 2\sin(2\pi t)\cos(2\pi t)dt = \int_0^1 \sin(4\pi t)dt = 0$$

$$\int_0^1 \phi_1^2(t)dt = \int_0^1 2\cos^2(2\pi t)dt = \int_0^1 [1 + \cos(4\pi t)]dt = 1$$

$$\int_0^1 \phi_2^2(t)dt = \int_0^1 2\sin^2(2\pi t)dt = \int_0^1 [1 - \cos(4\pi t)]dt = 1$$

Figure 1: Signal Constellation.

- (b) (2 pts)The signal constellation is shown on figure 1.
- (c) i. (2 pts) For the case where all signals are equally likely, the average energy \mathcal{E}_{x} is given by,

$$\mathcal{E}_{\mathbf{x}} = \frac{1}{4}(2 + 18 + 10 + 10) = 10$$

And the average energy per dimension shall be,

$$\overline{\mathcal{E}}_{\boldsymbol{x}} = 10/2 = 5$$

ii. (2 pts) For the case where

$$p(x_0) = p(x_4) = p(x_8) = p(x_{12}) = \frac{1}{8}$$

and

$$p(x_i) = \frac{1}{24}$$
 $i = 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15$

The average energy is simply,

$$\mathcal{E}_{x} = \frac{4}{8}(2) + \frac{4}{24}(10 + 10 + 18),$$

 $= \frac{22}{3},$
 $\overline{\mathcal{E}}_{x} = \frac{11}{3}.$

(d) (2 pts) Note that $(\phi_1(t), \phi_2(t), \phi_3(t))$ forms an orthonormal basis. The signal constellation \mathcal{Y} lives in a dimension one bigger than that of \mathcal{X} , and is a translation of \mathcal{X} . The corresponding energy is then,

$$\mathcal{E}_{y} = \sum_{i=0}^{15} (||x_{i}||^{2} + 16) p_{X}(i)$$

= $\mathcal{E}_{x} + 16 = 26$

- 2. (1.2) Inner Products.
 - (a) (4 pts) By using the following trigonometric identity,

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

the signals $x_0(t), x_1(t), x_2(t)$ can be written as,

$$x_0(t) = \sqrt{2} [\phi_1(t) \cos(\frac{\pi}{6}) - \phi_2(t) \sin(\frac{\pi}{6})]$$

$$x_1(t) = \sqrt{2} [\phi_1(t) \cos(\frac{5\pi}{6}) - \phi_2(t) \sin(\frac{5\pi}{6})]$$

$$x_2(t) = \sqrt{2} [\phi_1(t) \cos(\frac{\pi}{2}) + \phi_2(t) \sin(\frac{\pi}{2})]$$

where

$$\phi_1(t) = \begin{cases} \sqrt{\frac{2}{T}} \left(\cos \left(\frac{2\pi t}{T} \right) \right) & \text{if } t \in [0, T] \\ 0 & \text{otherwise} \end{cases}$$

$$\phi_2(t) = \begin{cases} \sqrt{\frac{2}{T}} \left(\sin \left(\frac{2\pi t}{T} \right) \right) & \text{if } t \in [0, T] \\ 0 & \text{otherwise} \end{cases}$$

are indeed an orthonormal basis,

$$\begin{split} \int_0^T \phi_1(t)\phi_2(t)dt &= \int_0^T \frac{2}{T}\sin(\frac{2\pi t}{T})\cos(\frac{2\pi t}{T})dt = \int_0^T \sin(\frac{4\pi t}{T})dt = 0 \\ \int_0^T \phi_1^2(t)dt &= \int_0^T \frac{2}{T}\cos^2(\frac{2\pi t}{T})dt = \int_0^T \frac{1}{T}[1+\cos(\frac{4\pi t}{T})]dt = 1 \\ \int_0^T \phi_2^2(t)dt &= \int_0^T \frac{2}{T}\sin^2(\frac{2\pi t}{T})dt = \int_0^T \frac{1}{T}[1-\cos(\frac{4\pi t}{T})]dt = 1 \end{split}$$

(b) (3 pts) From part (a) it is easily seen that the data symbols are,

$$x_0 = \left[\sqrt{\frac{3}{2}} - \frac{\sqrt{2}}{2} \right]$$

$$x_1 = \left[-\sqrt{\frac{3}{2}} - \frac{\sqrt{2}}{2} \right]$$

$$x_2 = \left[0 \sqrt{2} \right]$$

(c) (3 pts) From the conservation of inner product,

$$\langle x(t), y(t) \rangle = \langle \boldsymbol{x}, \boldsymbol{y} \rangle$$

we obtain,

i.
$$\langle x_0(t), x_0(t) \rangle = \frac{3}{2} + \frac{1}{2} = 2$$
.

ii.
$$\langle x_0(t), x_1(t) \rangle = -\frac{3}{2} + \frac{1}{2} = -1$$

iii.
$$\langle x_0(t), x_2(t) \rangle = -1$$

- 3. (1.3) Multiple sets of basis functions.
 - (a) (2 pts) The functions u(t) and v(t) are given by,

$$u(t) = \begin{cases} \frac{2}{3} & \text{if } t \in [0, 2.25] \\ 0 & \text{if } t \in [2.25, 6.75] \\ \frac{2}{3} & \text{if } t \in [6.75, 9] \end{cases} \quad v(t) = \begin{cases} 1 & \text{if } t \in [0, 2.25] \\ -\frac{1}{3} & \text{if } t \in [2.25, 6.75] \\ 1 & \text{if } t \in [6.75, 9] \end{cases}$$

See figure 2.

(b) (3 pts) The new basis functions are,

$$\phi_1(t) = \begin{cases} \frac{\sqrt{2}}{3} & \text{if } t\epsilon[0, 2.25] \\ 0 & \text{if } t\epsilon[2.25, 6.75] \end{cases} \quad \phi_2(t) = \begin{cases} 0 & \text{if } t\epsilon[0, 2.25] \\ \frac{\sqrt{2}}{3} & \text{if } t\epsilon[2.25, 6.75] \\ 0 & \text{if } t\epsilon[6.75, 9] \end{cases}$$

See figure 3.

And obviously, we have

$$v = \left[\begin{array}{c} \frac{3}{\sqrt{2}} - \frac{1}{\sqrt{2}} \end{array} \right]$$

Figure 2: u(t) and v(t)

Figure 3: New Basis function

4. (1.4) Minimal orthonormalization with MATLAB.

0.0647

-0.2450

-0.4900

-0.8035

0.6788

0.0338

0.0677

0.1873

(a) (2 pts) MATLAB is used to generate the new set of basis functions,

0.2249

-0.3479

-0.6959

0.4563

Note that the Q matrix is not unique. MATLAB normally will give the above answer, except may be for a sign change of some of the basis vectors.

(b) (2 pts)The number of basis functions needed is 3. In the time domain, the new basis functions $\hat{\phi}_i(t)$, i=1,2,3, are given by,

$$\left[\begin{array}{cc} \hat{\phi}_1(t) & \hat{\phi}_2(t) & \hat{\phi}_3(t) \end{array} \right] = \phi Q$$

where $\phi = [\phi_1(t) \ \phi_2(t) \ \phi_3(t) \ \phi_4(t) \ \phi_5(t) \ \phi_6(t)]$.

(c) (1 pt) The new matrix \hat{A} which gives the data symbol representation for the original modulated waveforms using the smaller set of basis functions found in (b) is given by,

A_hat=Q'*A

A_hat =

Columns 1 through 8

2.6907	6.1696	8.5609	12.0398	14.4311	17.9100	20.3013	23.7802
-1.2239	-3.4513	-0.0148	-2.2422	1.1943	-1.0331	2.4034	0.1760
1.1235	0.1561	0.8430	-0.1244	0.5625	-0.4049	0.2820	-0.6853

This problem can also be done using the **qr** function in MATLAB, which gives us the answer to all the parts at once.

- 5. (1.5) Decision rules for binary channels.
 - (a) (5 pts) The Binary Symmetric Channel (BSC).

For equally likely inputs the MAP and ML decision rules are identical. In each case we wish to maximize $p_{y|x}(y|x_i)$ over the possible choices for x_i . The decision rules are shown below,

$$p < \frac{1}{2} \Rightarrow \hat{X} = Y$$
$$p > \frac{1}{2} \Rightarrow \hat{X} = 1 - Y$$

(b) (5 pts) The Binary Erasure Channel (BEC).

Again, since we have equiprobable signals, the MAP and ML decision rules are the same. The decision rules are as follows,

$$p_1 < p_2 < \frac{1}{2} \Rightarrow \hat{X} = \begin{cases} Y & \text{if Y=0,1.} \\ 1 & \text{if Y=2.} \end{cases}$$

 $p_2 < p_1 < \frac{1}{2} \Rightarrow \hat{X} = \begin{cases} Y & \text{if Y=0,1.} \\ 0 & \text{if Y=2.} \end{cases}$