
EE 379A Handout #5
Digital Communication: Signal Processing Thursday, January 27, 2005

Homework #2 (67 + 1 pts)
Solutions

1. (1.7) Irrelevancy/Decision Regions. (From Wozencraft and Jacobs)

(a) i. (1 pt) The following relations can be written,

y1 = x + n1

y2 = x + n2

y3 = x + n1 + n2

Using the above equations, y3 = y1 + n2 , and,

py3|y1,x(y3|y1, x) = py3|y1
(y3|y1) = pn2(y3 + y1)

Therefore, given y1 only, y3 is irrelevant.
ii. (1 pt) In this case, we have,

py3|y1,y2,x(y3|y1, y2, x) = δ(y3 + y2 + y1 + x),
py3|y1,y2

(y3|y1, y2) = px(y1 + y2 + y3) 6= δ(y3 + y2 + y1 + x).

where δ(x) is the Dirac delta function.
Therefore y3 is relevant. This fact is easily seen by noticing that x = y1 + y2 + y3 .
If y1, y2, y3 are known, the transmitted message x can be determined with a zero
probability of error.

(b) (1 pt) Again, the following conditional probabilities are computed,

py2|y1,x(y2|y1, x) = pn2(y2 − x)

=
1
2
e−|y2−x|

py2|y1
(y2|y1) = py2|y1,x(y2|y1, 1)px(1) + py2|y1,x(y2|y1,−1)px(−1)

=
1
4
[e−|y2−1| + e−|y2+1|]

Obviously, py 2|y 1,x 6= py 2|y 1
and therefore y2 is relevant, given y1 .

(c) (3 pts) In this part of the problem, the MAP rule will be applied, and then specialized
for equiprobable input signals. The decision region D1 is obtained by applying the MAP
rule,

py2,y1|x(y2, y1|1)px(1) > py2,y1|x(y2, y1| − 1)px(−1)
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Since n1 and n2 are independent random variables, then,

p

4
e−|y1−1|−|y2−1| >

1− p

4
e−|y1+1|−|y2+1|,

⇔ K(y1, y2) = |y1 − 1|+ |y2 − 1| − |y1 + 1| − |y2 + 1| < log
p

1− p
.

where px (1) = p .
The following cases are taken into consideration,

i. y1 > 1, y2 > 1 ⇒ K(y1, y2) = −4
ii. y1 < −1, y2 > 1 ⇒ K(y1, y2) = 0
iii. y1 > 1, y2 < −1 ⇒ K(y1, y2) = 0
iv. y1 < −1, y2 < −1 ⇒ K(y1, y2) = 4
v. y1 > 1, −1 < y2 < 1 ⇒ K(y1, y2) = −2(y2 + 1)
vi. y1 < −1, −1 < y2 < 1 ⇒ K(y1, y2) = −2(y2 − 1)
vii. −1 < y1 < 1, y2 > 1 ⇒ K(y1, y2) = −2(y1 + 1)
viii. −1 < y1 < 1, y2 < −1 ⇒ K(y1, y2) = −2(y1 − 1)
ix. −1 < y1 < 1, −1 < y2 < 1 ⇒ K(y1, y2) = −2(y1 + y2)

For p = 1
2 the boundaries of the decision regions are given by the equation K(y1, y2) = 0,

leading to the desired result.
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Figure 1: Optimum decision region for equiprobable messages.

Note: If K(y1, y2) = 0 then either symbol xi might be chosen.

(d) (4 pts) The receiver is optimum since its decision regions coincide with the ones of the
optimum receiver derived earlier. The probability of error is given by,

Pe = Pr{y1 + y2 > 0|x = −1}px(−1) + Pr{y1 + y2 < 0|x = 1}px(1)

Because of the symmetry of the pdf,
Pr{y1 + y2 > 0|x = −1} = Pr{y1 + y2 < 0|x = 1} = Pr{n1 + n2 > 2}
Let us define the random variable n as n = n1 + n2 . The pdf of n is the convolution of
fn1(n) and fn2(n),

fn(n) = fn1(n) ∗ fn2(n)
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Taking the Laplace transform on both sides, yields, after simplification,

Fn(s) = L[fn1(n)]2 =
1

(1− s2)2

Using partial fraction expansion,

Fn(s) =
1

4(1− s)2
+

1
4(1 + s)2

+
1

2(1− s2)

Taking the inverse Laplace transform gives,

fn(t) =
1
4
(|t|+ 1)e−|t|

Finally,

Pr{n1 + n2 > 2} =
∫ ∞

2

1
4
(t + 1)e−tdt = e−2

And the probability of error is, Pe = e−2 .

(e) (2 pts) From part (c),the decision regions for x = 1 are given by the inequality K(y1, y2) <
log p

1−p . Since p > 1
2 , log p

1−p > 0. Now for each case, we try to solve the inequality,

i. y1 > 1, y2 > 1 ⇒ K(y1, y2) = −2 < log p
1−p .

Therefore, in this region, choose x = 1.
ii. y1 < −1, y2 > 1 ⇒ K(y1, y2) = 0 < log p

1−p .
In this region, choose x = 1.

iii. y1 > 1, y2 < −1 ⇒ K(y1, y2) = 0 < log p
1−p .

In this region, choose x = 1.
iv. y1 < −1, y2 < −1 ⇒ K(y1, y2) = 4

In this case, we choose x = 0 for 1
2 < p < 1

1+e−4 and x = 1 for 1
1+e−4 < p < 1.

v. y1 > 1, −1 < y2 < 1 ⇒ K(y1, y2) = −2(y2 + 1) < 0 < log p
1−p .

Therefore choose x = 1
vi. y1 < −1, −1 < y2 < 1 ⇒ K(y1, y2) = −2(y2 − 1) < log p

1−p .
Therefore, choose x = 1 if y2 > 1− 1

2 log p
1−p .

vii. −1 < y1 < 1, y2 > 1 ⇒ K(y1, y2) = −2(y1 + 1) < 0 < log p
1−p .

Always choose x = 1.
viii. −1 < y1 < 1, y2 < −1 ⇒ K(y1, y2) = −2(y1 − 1) < log p

1−p .
Therefore choose x = 1 if y1 > 1− 1

2 log p
1−p .

ix. −1 < y1 < 1, −1 < y2 < 1 ⇒ K(y1, y2) = −2(y1 + y2) < log p
1−p

Therefore choose x = 1 if y1 + y2 > −1
2 log p

1−p

If we draw such regions, we get the figure shown below.
You should note that for .982 < p < 1 it turns out that the optimum receiver always
chooses x = 1. And therefore, the outputs of the channel y1 and y2 are irrelevant.

2. (1.9) Receiver Noise with MATLAB.
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We need to compute the Q = orth(A) matrix. From matlab, we have,

Q =




0.3803 0.2260 −0.0120
0.7606 0.4520 −0.0239
0.0245 −0.2395 −0.0876
0.0464 0.1157 0.3710
0.2129 −0.3713 0.8501
0.4783 −0.7321 −0.3624




(a) (2 pts) At the output of the basis detector, we have,

y = (x + n)

The signal power is given by,

E[‖x‖2] =
∑7

i=0 ‖xi‖2

8
=

trace(AT A)
8

= 181

The noise power can be found in any of the possible ways. All of them are given equal
credit as the definition was not clearly specified.

i. σ2 = E[‖n‖2] = 6. Hence, SNR = 30.17 = 14.8dB

ii. σ2 = E[‖n−E[n]‖2] = 3. Hence, SNR = 60.33 = 17.8dB

iii. In class, when we use AWGN noise, σ2 is the variance of noise vector per dimension.
This changes (i) to σ2 = 1

6E[‖n‖2] = 1. Hence, SNR = 181 = 22.6dB

iv. The argument in (iii) changes (ii) to σ2 = 1
6E[‖n‖2] = 0.5. Hence, SNR = 362 =

25.6dB

(b) (4pts) The basis detector is now using φ̂(t) = φ(t)Q , where Q=orth(A) as in problem
1.4. In this case, the received vectors y at the output of the basis detector are,

y = QT (x + n)
= (x̂ + n̂)
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Figure 2: Optimum decision region for 0 ≤ p < 0.982.

4



The signal power is unchanged as columns of Q form a basis for the symbol vectors. But,
noise power may change as it may not lie completely in the space spanned by the columns
of Q. As in (a) we give credit to any of the following answers. But, your answers in both
parts have to be consistent.

i. σ2 = E[‖n̂‖2] = 2.77. Hence, SNR = 65.3 = 18.1dB

ii. σ2 = E[‖n̂−E[n̂]‖2] = 1.68. Hence, SNR = 107.8 = 20.3dB

iii. σ2 = 1
3E[‖n̂‖2] = 0.92. Hence, SNR = 195.9 = 22.9dB

iv. σ2 = 1
3E[‖n̂‖2] = 0.56. Hence, SNR = 323.3 = 25.1dB

(c) (2 pts) The error performance of these two detectors for AWGN will be identical because
the extra noise admitted by the first detector is orthogonal to the space spanned by the
signal set. For AWGN, this orthogonal noise is irrelevant. If the noise were correlated,
you might even desire the first detector and use the orthogonal noise to infer something
about the noise in the space spanned by the signal set.

(d) (2 pts) Using the Cauchy-Schwartz inequality, we choose h = x1 . And the maximum
value of h · x1 is 66.

3. (1.10) Tilt.

(a) (1 pt) Pe is invariant under rotation or translation of signal constellation. Therefore, Pe

does not depend on L or θ .

(b) (2 pts) First, we get the average number of nearest neighbors:

Ne =
M−1∑

i=0

Nipx(i)

=
4 + 4 · 2 + 4 · 3

9

=
8
3
.

Pe ≤ 8
3
Q

(
d

2σ

)

=
8
3
Q

(
2

2
√

0.1

)

= 2.09× 10−3.

(c) (5 pts) By part (a), the constellation shown in the figure gives the same Pe :

Pc|i=5 =
(

1− 2Q

(
d

2σ

))2

Pc|i=2,4,6,8 =
(

1− 2Q

(
d

2σ

)) (
1−Q

(
d

2σ

))

Pc|i=1,3,5,9 =
(

1−Q

(
d

2σ

))2

.

Hence,

Pc =
1
9

[(
1− 4Q + 4Q2

)
+ 4

(
1− 3Q + 2Q2

)
+ 4

(
1− 2Q + Q2

)]
,
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Figure 3: Equivalent Signal Constellation

Pe = 1− Pc

=
8
3
Q− 16

9
Q2,

where Q = Q
(

d
2σ

)
= Q(3.162) = 7.827× 10−4 . So,

Pe = 2.09× 10−3 − 1.09× 10−6

= 2.09× 10−3.

In this case, NNUB was off by 16
9 Q2 = 1.09× 10−6 , a small quantity compared to Pe .

(d) (2 pts) To get a constellation with minimum energy, we subtract from the constellation its
mean. So, a possible choice is the constellation of part c). The energy of the original con-
stellation would change with θ , whereas the energy of the minimum-energy constellation
would be independent of θ .

4. (1.13) Rotation with correlated noise.

(a) (2 pts) The noise nL along the line connecting the two constellation points is simply,
nL = n1 . The mean and mean square values are then,

E[n1] = 0 and E[n2
1] = 0.1

(b) (2 pts) Assuming that the detector was designed for uncorrelated noise (so we are using
a ML detector), the probability of error is given by,

Pe = Q(
dmin

2σ
) = Q(

√
10) = 7.83× 10−4 ' 10−3,

where dmin = 2 and σ2 = 0.1.
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(c) (2 pts) For general angle θ , we need to project the noise components n1 and n2 on the
line L connecting the two points x1 and x2 . In order to do so, we need to find the angle
of such a line with the horizontal and vertical axis.
From the figure, α = π

4 − θ . Therefore, the noise along line L is given by,

nL = n1 cos(
π

4
− θ)− n2 sin(

π

4
− θ)

And the corresponding mean and mean square values are,

E[nL] = 0
E[n2

L] = E[n2
1 cos2 α + n2

2 sin2 α− n1n2 sin(2α)]
= E[n2

1]− E[n1n2] cos 2θ

= 0.1− 0.05 cos 2θ

The mean square value of nL is minimized when cos 2θ = 1, i.e. when θ = kπ . In this
case, the probability of error is,

Pe = Q(
1√
.05

) = Q(
√

20) ' 3.87× 10−6.

(d) (1 pt) The detector designed for AWGN makes its decision entirely based on the projec-
tion of the received signal onto the line L connecting the two signals points x1 and x2 .
Therefore, the detector can be improved if the noise orthogonal to line L is relevant. Let us
denote this noise by no . In most of the cases, the orthogonal noise no will be correlated
with the noise nL , and will be useful to the optimum receiver. Hence, in general, our
detector could be improved. Let us see for which values of θ the orthogonal noise no will
be uncorrelated with nL ,

E[nLno] = E[nL(n1 sin(
π

4
− θ) + n2 cos(

π

4
− θ)]

= 0.05 sin 2θ

The noises are uncorrelated if and only if θ = kπ
2 . Thus, for the constellation in (c), the

detector is optimal.

phi1

phi2

α

x1

x2
L

0

θ

Figure 4: Constellation for general θ
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5. (1.16) Equivalency of rectangular-lattice constellations.

(a) The P e formula for PAM, QAM and TAM is identical,

P e ≤ 2 ·Q(

√
3 · SNR

22b − 1
) < 10−6

Therefore,

3 · SNR

22b − 1
= 13.8 dB

22b − 1 = 4.77 + 22− 13.8 = 12.97 dB ⇒ b = 2.19

b must be an integer, and so the highest data rate corresponds to b = 2 in all cases. Thus,

i. (0.5 pts) PAM : R = b ·N/T = 2 ∗ 1 ∗ 8k = 16 kbps
ii. (0.5 pts) QAM : R = 2 ∗ 2 ∗ 8k = 32 kbps
iii. (0.5 pts) TAM : R = 2 ∗ 3 ∗ 8k = 48 kbps

(b) (1.5 pts) In all three cases,

3 · SNR

22b − 1
= 4.77 + 22− 11.76 = 15.01 dB

P e ≤ 2 ·Q(15.01dB) = 1.8 · 10−8

(c) (2 pts) (Remark : Do not assume an SNR of 22 dB for this part)
R = 40kbps implies b = 5. So, a 32 CR-QAM constellation has to be used. For this, we
need,

P e ≤ 2 ·Q(

√
3 · SNR
31
32M − 1

) < 10−6

3 · SNR
31
32M − 1

= 13.8 dB

SNR = 13.8 + 10 = 23.8 dB = 240
εx = 240 · σ2

Px = εx ·N/T = 240 · σ2 ∗ 2 ∗ 8 · 103

= 3840 ∗ 103 · σ2 = 65.8 + (σ2)in dB dB

This transmit power maintains the same P e .

(d) (1 pt) For a QAM system (SQ or CR), to increase b by 2, one needs 6 dB of extra
transmit power.
So, a 16 QAM system having an SNR of 22 dB (as seen in part a) has the same Pe as a
64 QAM system having an SNR of 28 dB (Pe ≤ 1.8 · 10−8 ).
Similarly, a 32 CR-QAM system having an SNR of 23.8 dB (as seen in part c) has the
same Pe as a 128 QAM system having an SNR of 29.8 dB (Pe ≤ 10−6 ).
Thus, at the increased SNR , a 64 QAM system satisfies the Pe requirement, but a 128
CR-QAM system does not. Therefore, the highest data rate that can be reliably sent at
the new SNR is R = 6 ∗ 8k = 48 kbps.
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6. (1.17) Frequency separation in FSK. (Adapted from Wozencraft & Jacobs.)

(a) (2 pts) First, we have to find the distance between x0(t) and x1(t). Before we do this,
let us check whether these signals are orthogonal for this particular value of ∆ = 104 .

∫ T

0
x0(t)x1(t)dt =

2Ex

T

∫ T

0
cos(2πf0t)cos(2π(f0 + ∆)t)dt

Using the trigonometric identity, cos a cos b = 1
2 [cos(a + b) + cos(a− b)], we obtain,

∫ T

0
x0(t)x1(t)dt =

Ex

T

∫ T

0
[cos(2π(2f0 + ∆)t) + cos 2π∆t]dt

=
Ex

2πT

[
sin(2π(2f0 + ∆)T )

2f0 + ∆
+

sin 2π∆T

∆

]

=
Ex

2πT
sin 2π∆T

[
1

2f0 + ∆
+

1
∆

]
,

since sin(2π(2f0 + ∆)T ) = sin 2π∆T (f0T is an integer).
For ∆ = 104 , the above quantity is equal to zero, and therefore, the signals are orthogonal.
The energy of each signal is Ex , and the distance between the signals is then

√
2Ex . The

corresponding probability of error is then,

Pe = Q

(√
2Ex

2σ

)
= Q(

√
2× 0.32
2× 0.1

) = Q(4) ' 3.2× 10−5

(b) (3 pts) From part (a), the inner product of x0(t) and x1(t) is given by,
∫ T

0
x0(t)x1(t)dt =

Ex

2πT
sin 2π∆T

[
1

2f0 + ∆
+

1
∆

]

This quantity is equal to zero if and only if sin 2π∆T = 0, or equivalently if and only if
|∆| = n

2T , n = 1, 2, . . . . Therefore, the smallest ∆ is, ∆ = 5× 103 .
This constellation is block orthogonal.

7. (1.21) Comparing Bounds.

(a) (2 pts) The signal constellation is shown in the figure below.

From the signal constellation, we get dmin = 2. Since we have 5 signals, the Union Bound
is given by,

Pe ≤ 4 Q

(
dmin

2σ

)

= 4 Q

(
1
σ

)
.

(b) (2 pts) The number of Nearest Neighborhood Ne = 1/5(2+2+3+3+2) = 2.4. Therefore,
the Nearest Neighborhood Union Bound is given by,

Pe = 2.4 Q

(
1
σ

)
.
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Figure 5: Signal Constellation

(c) (1 pt) Since Ex = 1/5(2× 4 + 32) = 1.7,

σ =

√
Ēx

SNR
=

√
1.7

101.4

Therefore, we get

Pe(NNUB) = 2.4×Q




√
101.4

1.7


 = 1.45× 10−4.

8. (1.28) Basic Detection

(a) (2 pts) Using the formulae given for Q̃(x), we get:

Q̃(−∞) = 1

Q̃(0) =
1
2

Q̃(∞) = 0
Q̃(
√

10) = 5.7 · 10−3

(b) (1 pt) We have:

Q̃(x) = 10−6 ⇔ 1
2

exp(−
√

2x) = 10−6 ⇔ x = 9.3 = 19 dB

(c) (2 pts) Assuming equally likely inputs, we obtain:

Pe = P

(
n >

d

2

)
=

∫ ∞
d
2

1
σ
√

2
exp(−

√
2
|u|
σ

) = Q̃(
d

2σ
)
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(d) (2 pts) Since Ex = d2

4 ,

SNR =
d2

4σ2

and
Pe = Q̃

(√
SNR

)

(e) (2 pts) We now consider the case of PAM transmission. We modify the expression holding
for Gaussian noise, and we find that:

Pe = 2
(

1− 1
M

)
Q̃




√
3SNR

M2 − 1




(f) (2 pts) The following table provides the required SNR values for b̄ = 1, 2, 3 and Pe =
10−6 .

b̄ M SNR(dB)

1 2 20
2 4 27
3 8 33

(g) (1 pt) Comparing the SNR values found above with the SNR values for Gaussian noise
cited in the course reader, we conclude that Gaussian noise is preferable.

11


