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A Fast Computation Algorithm for
the Decision Feedback Equalizer

Inkyu Lee, Student Member, IEEE, and John M. Cioffi, Senior Member, IEEE

Abstract—A novel fast algorithm for computing the decision
feedback equalizer settings is proposed. The equalizer filters
are computed indirectly, first by estimating the channel, and
then by computing the coefficients in the frequency domain
with the discrete Fourier transform (DFT). Approximating the
correlation matrices by circulant matrices facilitates the whole
computation with very small performance loss. The fractionally
spaced equalizer settings are derived. The performance of the
fast algorithm is evaluated through simulation. The effects of
the channel estimation error and finite precision arithmetic are
briefly analyzed. Results of simulation show the superiority of
the proposed scheme.

1. INTRODUCTION

HE DECISION feedback equalizer (DFE) is a well-

known receiver structure that is used to mitigate intersym-
bol interference (ISI) in communication channels. The DFE
receiver structure has received considerable attention from
many researchers because its performance is superior to the
linear equalizer. It decodes channel inputs on a symbol-by-
symbol basis and uses past decisions to remove trailing ISI.
The minimum-mean-square-error decision feedback equalizer
(MMSE-DFE) optimizes the feedforward and feedback filter
to minimize the mean-square error [1]-[3].

Adaptive equalization is essential when transmitting data
over an unknown channel. The equalizer coefficients of the
adaptive DFE can be adjusted recursively [4]. However, the
convergence of the time-domain LMS adaptation algorithm is
slow, due to the high eigenvalue spread inherent in the DFE
structure. The recursive LMS adaptation of the DFE may take
millions of iterations to converge to the optimal solution on a
typical twisted copper wire loop, for example [5]. Fig. 1 shows
a learning curve of the DFE on 400 m 26 gauge copper loop
channel using the LMS algorithm with 64 feedforward taps and
25 feedback taps. The solid line at the bottom of the figure
indicates the minimum mean square error (MMSE). Even after
10000 iterations, the mean square error of the LMS algorithm
is still 3 dB away from the MMSE value. This problem has
motivated an interest in non-recursive adaptive methods based
on channel-estimates, in contrast to the traditional recursive
adaptive methods for computing the equalizer settings [6], [7].

Non-recursive adaptive equalization can be ‘decomposed
into two stages: first estimate the channel, then compute
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Fig. 1. Learning curve of the LMS algorithm.

the non-recursive DFE coefficients based on' the channel
estimates. This non-recursive approach has been shown to have
a performance advantage over the direct adaptive equalization
method [7], [8]. Also, in a time-varying channel, the channel
estimate based DFE is reported: to have better tolerance in
tracking to time variation than RLS adaptive DFE [9]. o

This paper presents a novel technique to compute- the
MMSE-DFE coefficients very efficiently, based on channel
estimates. The proposed algorithm requires knowledge of the
channel pulse response, along with the noise variance. It is
shown in the simulation, however, that the exact value of
the noise variance is not important. The channel identification
problem, on which the proposed fast algorithm is based, will
not be pursued in this paper. Simple methods include cross-
correlating channel output samples with a known broadband
training sequence [10]. Very accurate and efficient channel
identification can also be carried out in the frequency domain
using the fast Fourier transform (FFT) with special periodic
training sequences [11]. Designs of other training sequences
for channel estimates are discussed in [7], [12], [13].

Fast computation of the MMSE-DFE coefficients exploiting
structured matrices was derived in [6]. The authors in [6]
described an algorithm for computing the feedback filter with
O(Mv) operations where M is the length of the feedforward
filter and v is the length of the channel pulse response.
However, O(M?) operations are still required for obtaining the
feedforward filter, and this method involves the fast Cholesky
factorization algorithm which makes practical implementation
challenging. Also, the number of feedback taps is restricted to
v, which is not a practical assumption. '
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This paper proposes a fast algorithm to compute the MMSE-
DFE settings using only the discrete Fourier transform (DFT)
and the inverse discrete Fourier transform (IDFT), so that
the whole computation can be carried out with O(M log, M)
operations, when the fast Fourier transform (FFT) is used.
Direct matrix inversion can be avoided by approximating
the correlation matrix by a circulant matrix. The proposed
algorithm parallels a similar “cyclic equalization” technique
applied to the linear equalizer, which uses a periodic psuedo-
random training sequence [4], [13]-[17]. The proposed fast
algorithm can be implemented very efficiently in practice.
Simulation shows that the proposed method comes to within a
few tenths of a dB in terms of minimum mean square error per-
formance. Thus, the proposed non-recursive algorithm exhibits
superiority in computational efficiency over the conventional
recursive adaptive method.

In the following section, the optimum settings for the
MMSE-DFE are derived. In Section III, we describe the
proposed algorithm for the fractionally spaced equalizer. Then,
the performance of the fast algorithm is examined in the
symbol spaced equalizer and the effects of channel estimation
error and finite precision arithmetic are discussed in Section
IV. Section V contains a concluding discussion.

Il. DECISION FEEDBACK EQUALIZATION

The structure of the DFE is shown in Fig. 2. We assume
that the pulse response h(t) extends over a finite interval
0 < ¢t < VT, where T denotes the symbol period. The
standard additive white Gaussian noise channel model is used
throughout this. paper, where the input/output relation is given
by:

y(t) = Y amh(t —mT) + n(t)
where y(t) is the channel output, {z.,} is the channel input
sequence with signal power &£;,h(t) is the channel pulse

response, T is the symbol period and n(t) is the additive
Gaussian noise with variance o2

.

With a fractionally spaced equalizer sampling at time in-
stants ¢ = kT — ¢T'/l,:+ = 0,1,---,1 — 1, the input/output
relation for the discrete time equivalent channel has the form:

v, = h,giimtmy M
where [ is the oversampling factor and
(i 520 (k4 520) .
po= [o(k1-+ S0k 20
n, = {n (kT + lthT>n<kT + l—;zT) - -n(kT)} T.

We assume that the channel input sequence {z} and the noise
sequence {n;} are uncorrelated with each other.

Y, y(kT)]T,

h(kT)]T,
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Fig. 2. Structure of DFE.
Using (1) for M successive I-tuples of samples of y(t), we
can form the following relation:
Y, = Hzp + ny,
=Yy + (2

where ¥, = Hz; represents the noiseless channel output
vector,

yk i Tk
Y. 1 Tr—1
Y = . , Tk = . )
We—nr1 FTk—M-v+1
[ 2 ] i ~gk
n,_q . Yps
ne = : y Y= . )
Lﬂk—M+1 - 141
and
hy hy -~ h, 0 -~ 0
0 hy hy -~ h, ---
B=|. T T ,
0 -~ 0 hy hy - h,

As shown in Fig. 2, the DFE consists of two filters. A
fractionally spaced feedforward filter has M . [ taps and
a symbol-spaced feedback filter has N + 1 taps. We will
denote the feedforward filter and the feedback filter by w =
[wg’wf’ e 7wTM_1]T and b = [17 bl, b27 Tty bN]T7 where
w; = [wo,iywl,i7 Tty wl—l,i]T-

From Fig. 2, assuming that the decisions are correct, the
error signal is defined as

€ =Tk—A — 2k

M~-1 N
SRS S L
m=1

m=0
= b*Zk_A — 'w*yk
where A represents the decision delay, zx_a =

[Th—a,Th-A-1,""",Tk—A-N]T, and  indicates the complex
conjugate transpose.

The effect of decision delay A has been studied in [18].
With a sufficiently long feedback filter, the optimal A becomes
M — 1. The choice of A can significantly affect performance,
especially with short filter lengths. There is no closed-form
solution for the optimum A in the DFE, while the linear
equalizer has a closed-form optimum decision delay.

It is useful to define Ryz = FElp_azi_Al, Rzy =
R}, = Elzr-a%;] and Ry, = E[y,y;]. We note that these
correlation matrices are Toeplitz assuming a stationary process.
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From the orthogonality principle, we can derive the mini-
mum mean Square error as

2 *
omse = b Bayb
where

Then, it can be shown [\19], [20] that the solutions of the

optimum DFE are

1.,
b= kRZI?/ @
w= Rhlliym &)
where k is the (1, 1) element of R;ly and eg = [1 0 --- O]7.

II. FAST EQUALIZATION ALGORITHM

We begin with a brief notational description. A plain lower-
case variable denotes a scalar quantity, while a bold lowercase
variable denotes a vector. A DFT column vector is represented
by a plain uppercase variable, while a matrix is represented
by a bold uppercase variable. The symbol I, represents the 7
by n identity matrix, and the symbol 1,, indicates an all one
column vector of length n.

First we describe a circulant matrix. A circulant matrix has
the discrete Fourier transform basis vectors as its eigenvectors,
and the discrete Fourier transform of its first column as its
eigenvalues. Defining M’ = M -1, an M’ by M’ circulant
matrix can be decomposed as

Co CM/—1 CM'—2 -+ C1
C1 Co CM/—1
L3
Co (&) Co = -M—/P Acp
CM'—1 ' T o

where P is the discrete Fourier transform (DFT) matrix with ‘

P = e~j21rmn/M’7 0 ﬁ m,n S M/ _ 1,

and Ac is an M’ by M’ diagonal matrix whose diagonal
elements are M’-point DFT of [co,c1, -, cprr—1), the first
column of the circulant matrix.
We will define Pp; as a M’ by M submatrix of P,
consisting of every /th columns of P: Py = [py p; Py
P(rr—1y] where p; is the ith column of P. Similarly,
we define Py as a M’ by N + 1 submatrix of P,
consisting of every Ith columns of P:Py = [p, P, Pu
, Pni)- We note that premultiplying a column vector y of
length M’ by P yields its DFT column vector, Y = Py, and
premultiplying a column vector = of length N + 1 (<M) by
Py produces its zero-padded M’-point DFT column vector,
since

Pnz =Plzg 0
=[x7T

0 Ty 0
XT]T

czn 0 0)F

where the column vector X is the M-point DFT of [zg
ay 0 0]7. Similarly, PyY represents the
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truncated IDFT vector y since PRY = [yo w1 Y2
yni] " _

Note that from the orthogonal property of the DFT basis
function P*P = PP* = M/[Mf and P}{\IPN = J\flIN.H7
but Py Py # M'Iy. Also it can be shown that

PyPi = My i s Iv). ()

It is convenient to denote Az as the diagonal matrix whose
diagonal element consists of the elements of a column vector
Z. Here We assume that Z is a DFT column vector. Usmg
P“ = ( 577)P", the inverse of the above circulant matrix is
() P"AGP.

The main innovation of the fast start-up equahzatlon in this
paper arises from the approximation of a Toeplitz correlation
matrix by a circulant matrix. A circulant matrix is asymptot-
ically equivalent to a Toeplitz matrix [21]. By making this
approximation, most computations can be implemented with
the discrete Fourier transform and inverse discrete Fourier
transform very efficiently.

QOur derivation assumes that the Iength of the feedforward
filter, w, exceeds that of the feedback filter b(M’ > N + 1).
This restriction may not be applicable in some channels such
as the subscriber loop, where the feedback filter can be longer
than the feedforward filter. However, a long feedforward filter
can be accurately approximated by a pole-zero filter with
fewer coefficients using a computationally-efficient algorithm
described in [22] with little peIfonnance loss.

We denote Ry, Bys, Ry, and Rw|y as the ‘approximation
to the matrices Ry, Ryo, Ryz, and R, respectively. The
autocorrelation matrix Ry, is computed as Ry, = F[§,95] +
- 21 from (2). To approximate R, as a circulant matrix,
we assume that {§, } is cyclic. Using (6), E[#,#}] is computed
as a time-averaged autocorrelation function: ‘

R 1 N
Elygr] = i Z YeYr
k=0
1 "
——MCYGY
1/1 .,
=a\art AP )\ ap Pty B
1 T
= WP*A? [IM IM]A}“/*P
I§y:
s
=.72E | | B Ay )P
Af/l

where the column vector Y is the M’ point DFT of [,
-

Un—2 73, the length M column vector Y denotes
the ith sub—vector of V:V = [YT V2T YT and
N TS TR
, Y2 Iu-1 Y
Cy = Ynro Uns

Yprs

QO yM—~1
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Similarly, R, = Ely,z}_,] is equal to E[f,z}_,] since
T and ny are assumed to be uncorrelated with each other,
thus R, is approximated by

| M-
i Z YrTh-n
k=0

1 %
= MC’yCX
1 1 1 .,
=7 (M’P*A PM) (M’ MA;(*PN)
1 T
:mP*A? [IM IM]AX*PN
I §Y;
s
= WP* : [Ax* AX*]PN
Ai/l
where
m#j\{k—A-l Thi—n-2 Thr—a-3 Th_A-N-1
Ty-a  Thm-a-1 TM-a—2
Cx= TM_at1  TM-A  Thoa-1

Th_p-2 TM-a-1

and the column vector X is the M’ point DFT of [za7—a_1

0 e 0 TM —-A-2 0o - TMI—A 0o .- 0]
Thus X = [XT XT)T where X represents the DFT
vector of [:L’M_A_l TM-A-—2 - o Tp—1 """ OL'M_A].

Defining ® and @ as the element-wise multiplication and
division respectively, the inverse of R,,, along with the matrix
inversion lemma,! is then

—_1 o ex
Ryy = (E[ykyk

1
M2
=P*(I'yIy + M'lo2Iy)"1P
1 1
=P (Mftag (IM’ T el Y
(L Ty +1M)—1r;;))P

1
ar 2

+1- UiIM/)_l

-1
PY(I'y I + M’lailM,)P}

———P*(Iyy, ~ Py AG' Ty )P

where I'y = [Ag, - Ai)F,© = © + M'lo21p, and
© = ZL_, ||[Y?||?. Here || - ||? is defined as the element-wise
norm square:

llaol® la1]? -+ lanr—1*]"-

Also, note that I'y-I'y = Ag.
For simplicity, we assume that the input sequence {z;} is
a white sequence: R,, = £,Iyy1. This assumption can be

lllao a1 - ana]7l? =

'If A and C are nonsingular and A, B, C and D have consistent dimen-
sions, then

(A4+BCD)' =A™ —A"'B(DA"'B+C~1)"'DA™!.
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satisfied by setting |X;|2 = £,M for all 4, which implies a
constant amplitude zero autocorrelation (CAZAC) sequence.
Substituting the above equations into (5) yields

»-15 1 * * sk
Yy yx = WP (FYFX - PYA§®6F)()PN
1 " «
= MP*(FYA;F})PN.

Also, using the above results, matrices in (3) become

R, =¢, IN+1 M,2PNFXFYFYA Iy Py
M 7 PN(M'E.Iyy — TxAgoel'x)Py
EIE £3 %
= A—/[‘,PN(IM’ — F1A§®l9F1)PN @)
where[‘X:[AX-~AX]Tand1“1=[IM-~IM]T.

From (4), the feedback filter b can be computed directly.
Since R,, is block Toeplitz, its inversion can be carried
out efficiently using the Levinson—Trench algorithm using
O(I3N?) recursions as in [8]. However, implementing the
Levinson—Trench algorithm is still not attractive in terms of
complexity and cost in real time applications. Thus we make
a further approximation in inversion of matrix in (4), so that
the whole computation can be done with only the DFT. Here
the inverse of le|y is approximated by

-1

R, = z M,PN(IM, FIA@@@I"})“lPN
1 .
=7 M/PN(IM/ — (il — Mg ) 'T7) Py
% ]‘ £
(‘,'M’P (IM/+MIZ2 QF[A F)PN

This approximation turns out to be quite accurate from the
simulation as will be shown later. Note that a scalar constant
of wa is not important, since scaling takes place in (4).

Plugging the above equation into (4) yields

b:%P}‘\,(IM/ - g s Fj)lM/
:%P?V(I,I].M-F ez TS 1M>
k,PNFIAglM
= LPAIO

where k' is a scaling constant to make b monic (bg = 1).
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Once b is obtained, we can compute the feedforward filter
w from (5):
1 B
B
1
= MP*FyX*@B@@
. V®X*®B0O
=_—p* :
Vi X*®BQ6O
{ B@O
= MP YRX*® :
B@©O
where the column vector B is the M-point DFT of
[T by by by 0 --- 0]
Without loss of generality, we can represent the noise-
less channel output sequence {¥;} in the discrete frequency
domain as a column vector form:

Y = H*@PA®X ®)
where the column vector H is the M’-point DFT of the

channel response sequence {h;}, Pa = [PL --- PT]T and
Pp = [1 e=027A/M o=i2m20]M | o—j2m(M-1)A/M]T
Substituting Y into the above equations yields
, 1 o
b= X ey S ™
©
and
B
w=PE, H* QPA® : 10
' B@O

where © = E, M ¥!_, (||[H*||?) + M'loZ1y and the length
M column vector H* denotes the ¢th sub-vector of H: H =
[HIT H2T H’lT]T.

Defining B, as

— 1
Bi:EQimodM, i=0,1--M 1 (In
where ©y indicates the kth element of the vector ©, the
feedback filter can be obtained from the IDFT operation in
O

M'—1

1 . :
b= om0 DM, p=0,1- N (12)
T i=0
To compute w, we multiply both sides of (10) by P:
ngxMHiPA’iBimOdM7 220,17M/—1 (13)

®i mod M
“where H; and B, are the ith element of column vectors H
and B.
From this equation, we can obtain w;, using the IDFT:
1 M —1
wy, = M_]_ E V[/ie]27r7,k/M ,

=0

k=0,1,---M —1.
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‘We notice that the whole computation of b and w can be
carried out using only the DFT and the IDFT with no matrix
inversion and/or multiplication.

It is interesting that b is independent of the decision delay,
A, which makes sense because Emh’, is now Toeplitz. Also, we
do not need to compute w for every A. Once w is computed
for A = 0,w with other values for A can be obtained by a
circular shift by the amount A.

We note that cyclic equalization -for the linear equalizer
is a special case of the proposed algorithm. With & =
1o 0], (13) becomes the similar equation derived
in [4], [15]. ‘

Another special case is the symbol-spaced equalizer for
{ = 1. In this case, plugging { = 1 into the above equations
yields

B——(E |Hi|> +02), i=0,1-

M=1, (14

and
EoH}Pa ;- B;

2 , M- 1.
ELHiZ + o2

;= t=0,1,-- (15)
When M’ is an integer power of 2, the DFT’s are carried
out by the fast Fourier transform to speed up the computation.
An FFT can be computed very efficiently in O(M’log, M)
operations. ‘
Because the asymptotic behavior of eigenvalues of Toeplitz
matrices approaches that of circulant matrices as the size
increases, the proposed algorithm is expected to converge tc_J’
the optimal solution as M’ increases. This observation will be
confirmed in the following section through simulations.

One choice of the training sequence in (8) is a psuedo- .
random noise sequence. Another attractive method is a chirp
sequence since this has a flat power spectrum and low peak-
to-average power ratio [23]. Thus we can descnbe a chirp
sequence for channel identification by

= JOTMF p_p 1,

T -M —1.

For multi-rate systems such as V.34, a chirp sequence is used
for probing to also determine the maximum baud rate [24].
With a chirp sequence, the baud rate and the DFE coefficients
can be estimated simultaneously.

Simulation results show that a better solution can be ob-
tained by introducing a scaling factor « to calibrate b. After
b is computed from the previous procedures, b scaled by
scalar @ can be used instead to compensate for the approx-
imation. The mean square error o pg, taking into account the
approximations after calibration is then

obps = 1 ab [Ry, LH (16)
where I; = [t bz -+ by]T and R:cly = R,; — 2R,y —
nyRyy Ryy)Ryy R,.. Here R, and R, are computed from
the input/output relationship in (2). ,

If we partition ley into

Ry = ch ‘;} an
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Lorentzian Channel with pw50/T=1 (N=6)

@
2
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Fig. 3. Performance of the fast algorithm in Lorentzian channel with N' = 6.

The optimal « that minimizes the mean square error can be

found by differentiating equation (16) with respect to o:
b'd+eb

25" 4b

Still we do not need to invert a matrix to compute «. Then
[l ab]is used instead of b*. A simpler scaling constant ag
can be derived if R, of (7) is used instead of R, in (16).
Using the same partition of R, as in (17), it can be shown
that

o = —

~k

bd
Qg = —zx—%
3 b'd
oMol
> (1Bil2/B:)
1=0
where
1 My
*=1[d, d - = i2mik/M
& =[d dy dn},  de W ; Bie ,

B, is defined in (11), and B; is the ith DFT element of
© -~ 0 b O 0 b by 0 --- 0]

Compared with o, can be obtained with only DFT
operations with little expense of performance. Typical values
of o and ¢y range from 1.1 to 1.8. Simple inspection of (14)
will reveal that scaling b by « has the same effect as having
scaled o2. This indicates that the perfect knowledge of o2 is
not required. Comparison between using « and «q is made in
the following section.

In summary, the fast equalization for the symbol-spaced

MMSE-DEFE is carried out as follows:

1) Compute &, |H;|? + o2 from the channel estimate.

2) Compute b using the IDFT as described in (12). The
scaling factor @ or o can be used to obtain a better
solution.

3) Using b computed in the above step, perform the IDFT
of E,HYPa; - Bi/(E4|Hi|? + 02) to get w as in (15).

In the following section, simulation results using the fast
algorithm are given.
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9 kft 26 AWG ADSL channel (N=25)
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Fig. 4. Performance of the fast algorithm in ADSL channel with N = 25.

1V. SIMULATIONS

In this section, we show the simulation results performed
by the fast algorithm described in the previous section. Perfor-
mance is computed assuming that the channel pulse response
and the noise variance are given. Two channels are used in
these simulations. The first channel is a magnetic recording
channel modelled using a Lorentzian step response

P p—

‘O = T @i/pune)

where pwsg is the width of the pulse at 50% of its peak value.
The pulse response, hy, in (1) is obtained from s(¢) using
hi = sx — sx_1 where s = s(kT).

The channel pulse response with pwso/T = 1 is used in
the simulation. The simulation result is shown in Fig. 3. In
this simulation, a feedback filter with 6 taps is used, and
the feedforward filter taps are changed as indicated in xz-axis.
Decision delay, A, is optimized to get the best SNR, and
matched filter bound (MFB) SN Ryrr = ||h||?E2 /02 is set to
15 dB. The solid line represents the SNR of the DFE computed
from the optimal b and w, and the dashed line indicates the
SNR computed from the fast algorithm with b scaled by «,
and the dotted line shows the SNR computed from the fast
algorithm with b calibrated by «p.

We next use a channel that models a 9 kft 26 AWG
asynchronous digital subscriber loop (ADSL) sampled at 640
kHz. The result is shown in Fig. 4. Similarly, the length of the
feedback filter is.set to 25 and the number of the feedforward
filter taps is represented on the z-axis.

The gap between the optimal SNR and the SNR from the
fast algorithm in both plots approaches zero as the number
of feedforward filter taps increases, as expected: When b is
scaled by «g, performance is close to that scaled by «a. It
is clear from both plots that the fast algorithm generates the
equalizer settings approaching the optimal solution within a
tenth of a dB.

In Fig. 5, simulation result performed on 400 m 26 gauge
loop channel is shown with different MFB ranging from 10-30
dB. Still, the proposed algorithm yields SNR very close to the
optimal value with different MFB values.
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400m 26 Gauge Loop (M=64,N=18)
24 T T T T T T T T

22 —— optimal SNR / 4
=~ - 8NR from the proposed algorithm /

. . . . ) . . .
10 12 14 16 18 20 22 24 26 28 30
Matchied Filter Bound (dB)

Fig. 5. Performance of the proposed algorithm with different MFB.

Lorentzian channel with pw50/T=1
T

T

—.aptimal SNR.. .. . -
-~ - SNR from the imperfect channel estimate :

24

L - L

)

=3

15 20 25
Matched filter bound (dB)

Fig. 6. The effect of the imperfect channel estimation.

While we do not address the channel estimation problem in
this paper, the effect of the channel estimation error is briefly
analyzed in Fig. 6. Again, the Lorentzian pulse response with
pwso/T = 1 is used with M = 24 and N = 6, and the
optimized ¢ is used when computing the proposed algorithm.
The solid line represents the SNR of the optimal DFE with the
perfect pulse response, and the dashed line indicates the SNR
of the proposed algorithm with the imperfect channel estimate.
In this simulation, the channel response is estimated using
the noniterative algorithm in [12] with the averaging factor
equal to 10. This requires 80 symbol periods for the channel
estimation. The plot shows that the proposed algorithm still
yields performance within 1 dB of the optimum solution. As
the number of averaging times increases, performance of the
fast algorithm approaches the optimal case. A more complete
analysis of the channel mis-estimation effect would be an
interesting topic. ’

In Fig.'7, the finite precision effect is investigated. The same
channel response as in Fig. 6 is used and the matched filter
bound is set to 25 dB. The large eigenvalue spread for the DFE
requires high precision arithmetic when direct matrix inversion
is used to compute the DFE coefficients in (4) and (5). The
plot shows the SNR difference between the infinite precision

Lorentzian channel with pw50/T: =1 {M=24,N=6)
0. T T T T

S I ——

SNR difference from the Infinite precision SNR (dB)
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Fig. 7. The effect of finite precision arithmetic.

solution and the finite precision case. The plot indicates that
the proposed algorithm is much less sensitive to the finite
precision, compared to the solution using matrix inversion.
The former starts to show degraded performance at a lower
precision than the latter. This is not surprising since the direct
matrix inversion is numerically sensitive.

V. CONCLUSIONS

We have proposed a novel fast algorithm for the minimum
mean square error decision feedback equalizer. Based on
channel estimates, the fast algorithm computes the equalizer
settings using the DFT and IDFT very efficiently. The overall
computation can be carried out without a mairix operation with
negligible performance loss as the number of the feedforward
filter taps increases. Simulations performed in a magnetic
recording channel and ADSL channel show that the fast
algorithm yields the near-optimal settings very efficiently. The
proposed algorithm is shown to be robust to finite precision
arithmetic compared to the direct matrix inversion solution.
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