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Abstract—In this paper, we present the diversity-multiplexing
tradeoff (DMT) analysis for minimum mean squared error
(MMSE) based amplify-and-forward cooperative multiple an-
tenna half-duplex relaying systems where a non-negligible direct
link exists between the source and the destination. First, we
evaluate an upperbound of the DMT which offers a theoretical
limit of the system and show that the upperbound is actually
achievable by existing optimal and suboptimal designs for the
relay amplifying matrix. Thereby, we establish the optimal DMT
for the MMSE-based cooperative relaying system. Our analysis
also illustrate the optimality of the conventional relay matrix
designs in terms of the DMT and leads to several interesting
observations. Finally, numerical simulations demonstrate the
accuracy of our analysis.

I. INTRODUCTION

In a recent decade, it has been well recognized that
multiple-input and multiple-output (MIMO) wireless systems
can improve link performance and spectral efficiency by uti-
lizing diversity and multiplexing gains [1] [2]. Recently, relay
cooperative techniques have also garnered a significant interest
thanks to the advantages such as extended cell coverage
and improved reliability [3]. For this reason, MIMO relaying
systems have been considered as a powerful candidate for next
generation wireless networks.

In practical relay networks, one of the most popular relaying
protocols is amplify-and-forward (AF) due to its simplicity,
which amplifies the signal received from the source and
forward it to the destination [4] [5]. In AF MIMO relay-
ing systems, designs of the optimum amplifying matrix (or
transceiver) at the relay have been active research areas over
the past few years. In pure relaying channels which do not
have a direct link from the source to the destination, many
studies have been carried out to maximize the transmit rate as
in [6] and references therein. When the decoding complexity
is an issue, minimum mean squared error (MMSE) based
approaches have also been studied in [7] and [8]. Extending
to the cooperative relaying channel which contains a non-
negligible direct link, the authors in [9] attempted to find the
optimal solution for the relay transceiver under the MMSE
criterion resorting to an iterative gradient method, because
the problem is non-convex. In addition, as a low complexity
alternative, a near optimal closed-form solution has recently
been proposed in [10].
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In fact, important performance measures such as a signal-
to-noise ratio (SNR) distribution or an outage behavior of
the MMSE strategy have widely been investigated in the
literature over point-to-point channels [11] [12]. Also, the
authors in [13] have recently characterized the high SNR
bit error rate performance of MMSE-based pure relaying
systems. However, for cooperative relaying systems, there
is no reported work for the analytical performance that can
explain numerical observations.

In this paper, we investigate the error performance limit of
MMSE-based cooperative relaying systems using a diversity-
multiplexing tradeoff (DMT) analysis which provides a com-
pact characterization of the tradeoff between the transmission
rate and the diversity order [1], and gives a convenient tool for
comparing various relaying systems with different protocols
[3] [4]. We first evaluate an upperbound of the DMT which
offers a theoretical limit of the system. Then by showing
that the upperbound is actually achievable by the optimal
and suboptimal relay matrix designs proposed in [9] and
[10], respectively, we establish the optimal DMT for MMSE-
based cooperative relaying systems. Our analysis illustrates
the optimality of existing solutions for the relay matrix design
[9] [10] in terms of the DMT and provides a helpful guideline
for designing the relaying system under the MMSE criterion.
Finally, computer simulations demonstrate the accuracy of our
analysis.

Throughout this paper, normal letters represent scalar quan-
tities, boldface letters indicate vectors and boldface uppercase
letters designate matrices. We use S

N
++ to denote a set of

N ×N positive definite matrices. The superscript (·)H stands
for conjugate transpose. IN and E[·] are defined as an N×N
identity matrix and the expectation operator, respectively.
Tr (A) and [A]k,k denote the trace and the k-th diagonal
element of a matrix A, respectively.

II. SYSTEM MODEL

In this paper, we consider a cooperative relaying system in
Fig. 1 where one AF relay node helps the communication
between the source and the destination in the presence of
a direct link. The source, relay, and destination nodes are
equipped with Nt, Nr, and Nd antennas, respectively. Our
discussion will focus on uncorrelated flat fading relay channels
as in [6]–[10] where no channel state information (CSI) is
allowed at the source, while both the relay and the destination
have perfect CSI of all links. We assume a spatial multiplexing
system which transmits Nt data streams simultaneously where
Nt ≤ min(Nr, Nd) as in [10]. It is also assumed that each
data transmission occurs in two separate time slots due to loop
interference in the relay node.
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Fig. 1. System description of a MIMO cooperative AF relay network

In the first time slot, the source broadcasts the signal
vector x ∈ C

Nt×1 to both the relay and the destination,
and the received signals at the relay and at the destination,
yr ∈ C

Nr×1 and yd1
∈ C

Nd×1, are respectively given by

yr = Hx+ nr and yd1
= Tx+ nd1 ,

where H ∈ C
Nr×Nt and T ∈ C

Nd×Nt denote the source-
to-relay and the source-to-destination (direct link) channel
matrices, respectively, and nr ∈ C

Nr×1 and nd1 ∈ C
Nd×1

indicate the noise vectors at the relay and at the destination,
respectively. In this phase, we have a source power constraint
as E[‖x‖2] ≤ Ntρ where ρ � PT /Nt denotes the input
signal-to-noise ratio (SNR) and PT indicates the total source
transmit power.

Next, in the subsequent time slot, the relay signal yr

is precoded by the relay transceiver Q ∈ C
Nr×Nr and

transmitted to the destination. Then, the received signal at
the destination is written by

yd2
= GQHx+ nd2 ,

where nd2
� GQnr + nd designates the effective noise

vector in the second time slot with covariance matrix Rn �
GQQHGH + INd

. In this case, the relay matrix Q needs to
satisfy the relay power constraint PR as E[‖Qyr‖2] ≤ PR.
We assume that all channel matrices have random entries
which are independent and identically distributed (i.i.d.) com-
plex Gaussian ∼ CN (0, 1), but remain constant over two time
slots. All elements of the noise vectors nr, nd1 and nd are
also assumed to be i.i.d. ∼ CN (0, 1).

As a result, combining two signals received at the destina-
tion over two consecutive time slots, we have the signal vector
yd ∈ C

2Nd×1 at the destination as

yd =

[
yd1

yd2

]
=

[
T

GQH

]
x+

[
nd1

nd2

]
. (1)

Finally, when a MMSE linear receiver W ∈ C
Nt×2Nd [9] is

employed at the destination, the estimated signal waveform
s ∈ C

Nt×1 is expressed as s = Wyd.

III. PRELIMINARIES

In this section, we summarize several important results
for designs of the relay amplifying matrix in MMSE-based
cooperative relaying systems.

Recently, it has been shown that the MMSE optimal relay
matrix Q̂ is generally expressed as Q̂ = BL where B ∈
C

Nr×Nt and L = (HHH+THT+ρ−1INt)
−1HH ∈ C

Nt×Nr

represents the relay precoder and receiver, respectively (see
[10] for detail). Then, for given linear receivers W and L,
the error covariance matrix denoted by Re � (s−x)(s−x)H

can be represented as a sum of two individual error covariance
matrices as

Re =
(
HHH+R−1

T

)−1
+

(
BHGHGB+Ω−1

)−1
, (2)

where RT ∈ S
Nt
++ and Ω ∈ S

Nt
++ are defined as RT �

(THT + ρ−1INt)
−1 and Ω � LHRT , respectively. The

first term of Re corresponds to the MSE in the broadcast
phase in the first time slot and the second term indicates
the incremental MSE due to the multiple access phase of the
second time slot.

Now, we define two eigenvalue decompositions GHG =
VgΛgV

H
g and Ω = UωΛωU

H
ω where Λg and Λω represent

square diagonal matrices with eigenvalues λω,k for k =
1, . . . , Nt and λg,k for k = 1, . . . , Nr arranged in descending
order. Then, it is also known that the relay precoder B can be
written without loss of any optimality as B = ṼgΦUH

ω where
Ṽg denotes a matrix constructed by the first Nt columns of
a unitary matrix Vg and Φ ∈ C

Nt×Nt is an arbitrary matrix.
Since the first term of Re consists of known parameters, the
original joint MMSE optimization problem for Q and W, i.e.,
min
Q,W

Tr(Re) reduces to optimizing Φ as

Φ̂ = min
Φ

Tr
(
ΦHΛgΦ+Λ−1

ω

)−1

s.t. Tr(ΦRωΦ
H) ≤ PR, (3)

where Rω = UH
ω L(ρHHH + INt

)LHUω .
Problem (3) is non-convex in general, and thus the solution

can be found by two different approaches: the optimal ap-
proach with an iterative method such as a gradient algorithm1

as in [9] and the suboptimal closed-form approach [10] based
on a diagonal relaxation which ignores off-diagonal elements
of Rω , i.e., Φ = Φd where Φd ∈ C

Nt×Nt denotes a
diagonal matrix. In this paper, the analytical performance of
these two cooperative schemes [9] [10] will be studied. Since
Φd becomes globally optimal when T = 0 or Nt = 1,
our analysis includes conventional optimal designs for pure
relaying channels without a direct link (T = 0) [7] [8] and
for the single stream cooperative transmission (Nt = 1) [14]
as special cases.

IV. DIVERSITY-MULTIPLEXING TRADEOFF ANALYSIS

Now, we evaluate the asymptotic high-SNR performance
of MMSE-based cooperative relaying systems using the DMT
analysis. We first propose an upperbound of the DMT which
provides a theoretical limit of the system. Then, by showing
that the upperbound is actually achievable by the optimal and
the suboptimal schemes proposed in [9] and [10], respectively,

1This approach is equivalent to [9] where the optimal relay matrix Q̂ was
directly found by a projected gradient method after the canonical coordination
beamforming.
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we specify the optimal DMT2 for MMSE-based relaying
systems. Several definitions and assumptions are given below.

Letting R(ρ) and Pe(ρ) denote the transmit rate and the
error probability with the operating SNR ρ, respectively, the
multiplexing gain r and the corresponding diversity gain d(r)
are defined as [1]

lim
ρ→∞

R(ρ)

log ρ
= r and lim

ρ→∞
logPe(ρ)

log ρ
= −d(r),

and we write Pe(ρ)
.
= ρ−d(r) for notational simplicity. The

inequalities ≤̇ and ≥̇ are similarly defined. Note that if the
rate R(ρ) is a constant over all SNR range, the multiplexing
gain converges to zero. In this paper, the outage probability
will be studied, since the outage performance of the mutual
information (MI) gives a good approximation of the block
error rate [1] [3]. Also, for simplicity of our analysis, we
assume PT = PR = Ntρ, but the result can be easily extended
to more general cases.

Our main result is illustrated in the following theorem.
Theorem 1: For MMSE-based cooperative relaying sys-

tems with Nt < min(Nr, Nd), the optimal [9] and the
suboptimal [10] relay matrices achieve the optimal DMT
characterized as

dMMSE(r) = (Nr +Nd −Nt + 1)

(
1− 2r

Nt

)+

.

Proof:
1) DMT Upperbound: In half duplex relaying systems with

the MMSE spatial equalizer and Gaussian input codeword
jointly encoded across antennas3, the MI can be defined as
[11]

I =
1

2

Nt∑
k=1

log (1 + γk) , (4)

where γk = ρ/[Re]kk − 1. Then, using Jensen’s inequality
and eliminating the second term of Re in (2), the MI is
upperbounded by

I ≤ Nt

2
log

(
1

Nt

Nt∑
k=1

ρ

[Re]k,k

)

≤ Nt

2
log

(
1

Nt

Nt∑
k=1

1

(ρHH
T HT + INt)

−1
k,k

)
, (5)

where HT � [HT TT ]T ∈ C
(Nr+Nd)×Nt . Now, we can check

that the terms inside the logarithm in (5) exactly coincide
with the point-to-point MIMO channel with Nt transmit and
Nr+Nd receive antennas. Thus, following the previous result
in [12], one can easily find an upperbound of the system DMT
as

dMMSE ≤ (Nr +Nd −Nt + 1)

(
1− 2r

Nt

)+

. (6)

Note that the multiplexing gain r multiplied by 2 in (6)
is attributed to the half-duplex nature of the system, which
means that r ≤ Nt/2.

2The optimal DMT reveals the best possible error probability exponent
d(r) in the considered system configuration.

3This coding strategy is also called vertical encoding on which we focus
here, but our result can be easily applied to horizontal encoding where data
streams are separately encoded in each source antenna [11] [12].

2) Achievability: First, we characterize an MI lowerbound
which describes the achievable DMT of existing relaying
strategies [9] [10]. Since the function − log(·) is convex, using
the definition in (4) and Jensen’s inequality again, we have

I ≥ −Nt

2
log

(
1

ρNt
Tr
(
Re

))
= −Nt

2
log

(
1

ρNt
Tr
(
Φ̂HΛgΦ̂+Λ−1

ω

)−1
+ σ

)
,

where σ � N−1
t Tr

(
ρHH

T HT + INt

)−1
. Since Φ̂ is optimal

[9] and the suboptimal solution Φd [10] is also optimal under
the diagonal structure, the setting Φ̂ =

√
ηIM clearly yields

an MI lowerbound of both cases where η can be chosen to be
η = PR/(ρNt) from Lemma 2 (see Appendix) and the relay
constraint in (3).

Then, by the assumption PR = Ntρ, we have η = Nt/M ≥
1 and it follows

I ≥ −Nt

2
log

( 1

ρNt
Tr
(
ηΛg +Λ−1

ω

)−1

+ σ
)

≥ −Nt

2
log

( 1

Nt
Tr
(
ρΛg + ρΛt + IM

)−1

+ σ
)
,

where the last inequality follows from Lemma 1 (see Ap-
pendix), because A � B implies Tr(A−1) ≥ Tr(B−1). The
important feature to notice here is that diagonal elements of
Λt are arranged in ascending order in contrast to Λg.

Using this bound and setting the target data rate as R(ρ) =
r log ρ, we finally obtain the outage probability as

Pout � P (I ≤ R(ρ))

≤ P
(

Tr
(
ρHH

T HT + INt

)−1

+Tr
(
ρ(Λg +Λt) + IM

)−1

≥ Ntρ
− 2r

Nt

)
= P

(
Nt∑
k=1

(
1

1 + ρλht,k
+

1

1 + ρλgt,k

)
≥ Ntρ

− 2r
Nt

)
, (7)

where λht,k designates the k-th largest eigenvalue of HH
T HT

and λgt,k � λg,k + λt,k.
Now, we derive the outage probability exponent. In the ex-

ponential sense, the outage probability in (7) mainly depends
on the worst case channel gain, and thus can be asymptotically
upperbounded as

Pout ≤̇ P

⎛⎝ 1

ρλht,Nt

+
1

min
k=1,...,M

{ρλgt,k} ≥ Ntρ
− 2r

Nt

⎞⎠
≤ P

(
Δ ≤ 2

Nt
ρ−(1−

2r
Nt
)
)
, (8)

where Δ � min(λht,Nt , λgt,min) and λgt,min �
mink=1,...,M{λgt,k}. The last inequality follows from the
harmonic mean bound A−1 + B−1 ≤ 2

min(A,B) . We see that
for the case of 2r/Nt ≥ 1, the outage exponent converges
to zero. Hence, supposing 2r/Nt < 1, we find the near zero
behavior of a distribution of Δ in the following.

For a small argument δ, we recognize from Lemma 3 (see
Appendix) that the cumulative distribution function (CDF) of
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Δ is given by

FΔ(δ) = Fλht,Nt
(δ) +

M∑
k=1

Fλgt,k
(δ),

where Fλht,Nt
(·), and Fλgt,k

(·) represent the CDFs of λht,Nt

and λgt,k, respectively. It is also well known [15] that for
an m × m complex Wishart matrix SHS with a Gaussian
matrix S ∈ C

n×m, its k-th largest (or smallest) eigenvalue
λk is polynomially distributed near zero as Fλk

(λk) ∝
λ
(m−k+1)+(n−k+1)+

k (or ∝ λ
k(n−m+k)+

k ).
Using these facts and employing Lemma 4 (see Appendix),

we obtain FΔ(δ) as

FΔ(δ) ∝ δ(Nr+Nd−Nt+1)

+

M∑
k=1

δ(Nd−k+1)(Nr−k+1) + k(Nd−Nt+k)


 δmin(Dh,Dg),

where Dh and Dg are defined as

Dh � Nr +Nd −Nt + 1

Dg � min
k=1,...,Nt

(
(Nd − k + 1)(Nr − k + 1)

+ k(Nd −Nt + k)
)

= min
k=1,...,Nt

(
Dh + (Nr − k + 1)(Nd − k)

+ (k − 1)(Nd −Nt + k)
)
.

Then, we see that Dg ≥ Dh holds for all k, and thus the
outage probability is readily acquired by

P (I ≤ R(ρ)) ≤̇ cρ−Dh(1− 2r
Nt
)
+

,

where c is a constant and the resulting outage exponent
lowerbound is dMMSE(r) ≥ (Nr+Nd−Nt+1)(1−2r/Nt)

+,
and the proof is completed.

Theorem 1 illustrates the best possible error probability
exponent, i.e., the optimal DMT of MMSE-based cooperative
relaying systems. From the result that the DMT upperbound
in (6) is actually achievable, we recognize that the optimal
DMT performance is determined by the broadcast phase in
the first time slot. Another interesting insight here is that
the DMT expression (Nr + Nd − Nt + 1)(1 − 2r/Nt)

+

coincides with that of a point-to-point open-loop MMSE
[12] with Nt-transmit and (Nr + Nd)-receive antennas used
at a rate 2R. This implies that with a well-designed relay
matrix, the relay and the destination act like a virtual single
MMSE receiver. Theorem 1 also shows that the suboptimal
approach based on the diagonal relaxation, i.e., Φ̂ = Φd [10]
incurs no performance loss in terms of DMT compared to
the optimal iterative design [9]. Our result accounts for the
analytical performance of conventional designs with Nt = 1
or T = 0 as special cases. For example, the DMT for the
single stream beamforming scheme with Nt = 1 [14] is
readily acquired as (Nr +Nd)(1− 2r)+. Also, setting T = 0
and following the proof of Theorem 1, we attain the DMT
of the MMSE-based optimal pure relaying system [7] [8] as
(Nr −Nt + 1)(1− 2r/Nt)

+.
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Fig. 2. Outage probability as a function of P0 with R = 5 bpcu

V. NUMERICAL RESULTS

In this section, we provide numerical results for the outage
performance of various relaying strategies to illustrate our
claims described in the previous section and demonstrate the
accuracy of our analysis. We define P0 as the total transmit
power used at both the source and the relay for two time
slots assuming PT = PR = P0/2. The transmission rate R is
measured in bits per channel use (bpcu)4.

Figures 2 presents simulations results for the outage perfor-
mance of the optimal [9] and the suboptimal [10] relay matrix
designs with Nt = Nd = 2 and various number of relay
antennas at rate R = 5 bpcu. The Naive AF indicates the most
simple scheme where only the power normalizing operation is

performed at the relay, i.e., Q =
√
PR/Tr(ρHHH + INr )INr

which serves as a benchmark to validate our analysis. Note
that with a fixed rate R, the multiplexing gain r equals
zero. In this configuration, the optimal DMT is expressed
as dMMSE(0) = Nr + 1. We confirm from this figure that
numerical performance of the optimal and the suboptimal
relay matrices exactly behave as predicted by our analysis.
On the contrary, we can check that the naive AF does not
properly exploit the relay antennas especially when Nr > 2,
which leads to a significant diversity loss.

Finally, Figure 3 presents the outage probability of 4×4×4
systems with a non-zero multiplexing gain r, In other words,
for each curve, the transmission rate is set to be a increasing
function of SNR as R(ρ) =̇ r log ρ bpcu. Note that the DMT is
given as dMMSE(r) = 5(1−r/2) from Theorem 1. For all sim-
ulations in this figure, we confirm that our analysis accurately
matches with the diversity order for various multiplexing gain
r.

4We transmit 2R bits for two time slots.
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VI. CONCLUSION

In this paper, we have studied the asymptotic high-SNR
performance of MMSE-based cooperative MIMO half-duplex
relaying systems using DMT analysis. First, we have estab-
lished the DMT upperbound which offers theoretical limit
of the system, and then its achievability has been proved.
From our analysis, it is shown that the suboptimal closed-
form design as well as the optimal iterative design for the relay
amplifying matrix achieve the optimal DMT which has been
evaluated in our analysis. Several interesting observations have
also been made. Finally, through numerical simulations, we
have verified the accuracy of our analysis.

APPENDIX

In this appendix, we introduce several useful lemmas which
have been exploited in our analysis.

Lemma 1: Define a diagonal matrix Λt ∈ C
Nt×Nt whose

diagonal entries consist of the eigenvalues of THT arranged
in ascending order, i.e., λt,1 ≤, λt,2 ≤, . . . ,≤ λt,Nt . Then,
we have Λ−1

ω � Λt + ρ−1INt where � (or ≺) represents the
generalized inequality defined on the positive definite cone.

Proof: After some mathematical manipulations, Ω in (2)
can be modified as Ω = RT −(

HHH+R−1
T

)−1. Since A =

B−C implies A ≺ B for A, B, C ∈ S
Nt
++, it must be true

that Ω ≺ RT . In other words, assuming that the eigenvalues
of RT are arranged in descending order, we have Λω ≺ (Λt+
ρ−1INt)

−1 and conversely we obtain Λ−1
ω � Λt + ρ−1INt ,

and the lemma is proved.
Lemma 2: At high SNR, Rω defined in problem (3) is

upperbounded by Rω ≺ ρINt .
Proof: Rω can be approximated at high SNR as

Rω = ρUH
ω L(HHH+ ρ−1INt)L

HUω

≈ ρUH
ω (HHH+R−1

T )−1(HHH)2

× (HHH+R−1
T )−1Uω.

Since we have HHH ≺ HHH + R−1
T , it is immediate that

Rω ≺ ρIM .
Lemma 3 ( [16]): For K positive random variables

{Xi}i=1,...,K
5, define W � min(X1, X2, . . . , XK). Then,

for a small argument w (i.e., w → 0+), the CDF of W is
given by FW (w) = FX1(w) + FX2(w) + · · · + FXK (w)
where FXi(·) indicates the CDF of Xi.

Lemma 4: Let us define two independent and polynomially
distributed random variables Y ≥ 0 and Z ≥ 0, i.e., FY (y) =
c1y

α and FZ(z) = c2z
β where α ≥ 1 and β ≥ 1, and c1

and c2 are constants. Then, the CDF of S = Y + Z equals
FS(s) = κsα+β where κ = c1c2α!β!

(α+β)! .
Proof: The CDF of S can be written in a convolution

form as FS(s) =
∫ s

0
αc1c2y

α−1(s − y)βdy. By solving the
integral, we simply obtain the result. Details are trivial, and
thus skipped.
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