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Abstract—In this paper, we study self energy recycling tech-
niques for point-to-point multiple-input multiple-output systems
where a full-duplex transmitter with multiple antennas commu-
nicates with a multi-antenna receiver. Due to the full-duplex
nature, the transmitter receives a signal transmitted by itself
through a loop-back channel. Then, the energy of the signal
is harvested and stored in an energy storage. Assuming time-
slotted systems, we propose a new communication protocol in
which the harvested energy at the transmitter is recycled for
future data transmissions to the receiver. Under this setup, we
present a transmit covariance matrix optimization method in
order to maximize the sum rate performance for two different
cases. First, for a perfect channel state information (CSI) case,
the globally optimal algorithm for the sum rate maximization
problem is proposed. Next, for an imperfect CSI case, we provide
a robust covariance matrix optimization approach where the
worst-case sum rate performance can be maximized. Numerical
results demonstrate that the proposed methods offer a significant
performance gain over conventional schemes.

I. INTRODUCTION

Recently, energy harvesting (EH) techniques based on radio
frequency (RF) signals have received great attentions which
can replace traditional energy sources owing to its convenience
and cost-effectiveness. When applied to conventional wire-
less communication systems, such a wireless power transfer
method becomes a promising solution to supply energy to
wireless networks [1] [2]. Normally, EH schemes can be
classified into two different research branches, namely simulta-
neous wireless information and power transfer (SWIPT) [3]–
[6] and wireless powered communication network (WPCN)
[7]–[10]. In the SWIPT system, a receiver can decode the
signal and harvest the energy at the same time during the
downlink transmission. In contrast, the WPCN adopts the
downlink wireless energy transfer and the uplink wireless
information transmission process.

Meanwhile, a new concept called self energy recycling
(ER) has been recently studied in [11]–[15]. In the self ER
systems, communication nodes operate in a full-duplex (FD)
mode so that the nodes can harvest energy of the RF signals
transmitted by themselves. Then, this harvested energy can
be recycled for conveying data to other nodes. In [11], a two-
phase self ER multi-antenna relay scheme was provided where
the optimal power allocation and beamforming at the ER relay
were designed. Also, [12] employed a self ER method for a
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multi-antenna relay in order to improve secrecy performance
in the presence of a passive eavesdropper. The authors in
[13] considered a scenario where a multi-antenna transmitter
is powered by both an external energy source and the self
ER. The self ER concept was applied to the WPCN system
in [14], where the time duration for multiple receivers were
optimized to maximize the sum rate performance. In addition,
the weighted sum power minimization problem was solved
in [15] for bidirectional FD multi-antenna systems. Note that
these works [11]–[15] assumed that the recycled energy is
available before the transmission, and thus it would result in
a non-causal energy issue at the self ER transmitters.

In this paper, we propose self ER methods for point-to-
point multiple-input multiple-output (MIMO) systems where
a multi-antenna transmitter operating in a FD mode transmits
the information signals to a multi-antenna receiver. Since the
FD mode is adopted, the transmitter receives its own signal
intended to the receiver through a loop-back channel. Then,
the energy of these loop-back signals is collected and stored
in an energy storage for future data transmission.

To tackle the non-causal energy issue in prior works on
the self ER systems, we assume the time-slotted transmission
protocol so that the transmitter can only utilize the energy
recycled during the past time slots. In this system, the sum
rate performance is maximized by optimizing the transmit
covariance matrix at each time slot. We consider the sum rate
maximization problem in two cases according to the level of
the channel state information (CSI) knowledge. First, when
perfect CSI is available, the optimal covariance matrix can be
obtained by using the Lagrange duality method. Subsequently,
we consider the imperfect CSI case, where the transmitter only
knows the estimated channel matrices with certain estimation
error bounds. In this case, we maximize the worst-case sum
rate performance by employing the S-procedure approach [16].
Numerical results confirm that the proposed schemes provide
substantially enhanced sum rate performance over conven-
tional methods, which do not adopt the self ER technique.

This paper is organized as follows: In Section II, we explain
a system model and formulate the sum rate maximization
problem. The optimal covariance matrix for the perfect CSI
case is proposed in Section III, and a robust solution is
provided for the imperfect CSI case in Section IV. Then, we
evaluate the performance of the proposed solutions through
numerical simulations in Section V. Finally, we terminate this
paper with summary and conclusion in Section VI.

Throughout this paper, we employ upper-case boldface
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Fig. 1. Block diagram for a self-energy recycling system

letters for matrices, lower-case boldface letters for vectors, and
normal letters for scalar quantities. A set of complex matrices
of size m-by-n is defined as Cm×n. For matrices A and B,
A⊗B denotes the kronecker product. In addition, transpose,
conjugate transpose and determinant of a matrix are denoted
by (·)T and (·)H , and | · |, respectively. Trace, rank, and the
vectorization operation of a matrix are represented by tr(·),
rank(·), and vec(·), respectively. Also, Im equals an identity
matrix of size m-by-m, and diag(a1, a2, · · · , am) stands for
a diagonal matrix of size m-by-m with diagonal elements
a1, · · · , am. For a complex vector, ∥ · ∥ and ∥ · ∥

F
indicate

the Euclidean norm and the Frobenius norm, respectively. In
addition, for a scalar x, [x]+ denotes max(0, x), and Re{x}
represents the real value of x.

II. SYSTEM MODEL

In this section, we describe a system model for a point-
to-point MIMO system with self ER. As shown in Fig. 1,
there are one transmitter and one receiver each equipped with
multiple antennas. In specific, the transmitter operates in a FD
mode, and has NI ≥ 1 transmit and NE ≥ 1 receive antennas,
respectively, while the receiver is equipped with M ≥ 1
receive antennas. Also, it is assumed that the transmitter has
no external power supply except for an energy storage with
non-zero initial energy E0.

In this paper, we consider a time-slotted system with total
K time slots. At each time slot, the transmitter sends an
information signal to the receiver. Concurrently, the transmitter
receives this transmitted signal through a loop-back channel,
which is utilized for harvesting energy. Then, this energy is
stored in the energy storage of the transmitter and can be
recycled for the data transmission in the future.

Denoting Hi ∈ CM×NI as the channel matrix at the i-th
time slot between the transmitter and the receiver, the received
signal yi ∈ CM×1 at the receiver can be written by

yi = Hixi + ni,

where xi ∈ CNI×1 ∼ CN (0,Qi) denotes the transmitted
signal at the i-th time slot with Qi ∈ CNI×NI being the
transmit covariance matrix, and ni ∈ CM×1 ∼ CN (0, IM )
indicates the complex Gaussian noise at the receiver. Then,
the achievable rate Ri at the i-th time slot is expressed as

Ri = log2 |IM +HiQiH
H
i |.

In the mean time, at the i-th time slot, the transmitter also
receives the signal ri through the loop-back channel Gi ∈
CNE×NI , which can be written by

ri = Gixi + zi,

where zi ∼ CN (0, INE ) stands for the Gaussian noise at the
transmitter. Then, the harvested energy Ei at the i-th time slot
can be obtained as [3]

Ei = ζE[∥ri∥2] = ζtr(GiQiG
H
i ),

where 0 < ζ ≤ 1 is a constant associated with an energy loss
during the energy harvest. For convenience, we assume ζ = 1
throughout this paper. Note that the harvested energy Ei at
the i-th time slot would be utilized for the data transmission
at future time slots j = i+ 1, · · · ,K.

Now, we explain the transmit energy constraint issue in
the ER system. At the i-th time slot, the transmitter extracts
the transmit energy tr(Qi) from the energy storage in order
to transfer the data signal xi. After the transmission, the
transmitter stores the harvested energy Ei at the i-th time slot
in the energy storage. As a result, the available energy Bi in
the energy storage at the i-th time slot can be expressed as

Bi = E0 +
i−1∑
j=1

tr(GjQjG
H
j )−

i−1∑
j=1

tr(Qj), ∀i, (1)

where the second term in (1) indicates the harvested energy
during the past time slots and the third term represents the
energy utilized for the data transmission in the past. Thus,
the transmit energy constraint at the i-th time slot is given by
tr(Qi) ≤ Bi.

In this paper, we aim to maximize the sum rate performance
by optimizing the transmit covariance matrices Qi for i =
1, · · · ,K. The sum rate maximization problem is formulated
as

max
{Qi≽0}

1

K

K∑
i=1

log2 |IM +HiQiH
H
i | (2)

s.t. tr(Qi) ≤ E0 +

i−1∑
j=1

tr(GjQjG
H
j )−

i−1∑
j=1

tr(Qj), ∀i.

In the following sections, we provide methods for solving
problem (2) in two different cases. First, when perfect CSI
is available, the optimal transmit covariance matrices will be
presented in Section III. Next, we discuss a robust solution to
(2) for the imperfect CSI case in Section IV.

III. PERFECT CSI CASE

In this section, we propose the optimal algorithm for prob-
lem (2) in the perfect CSI case. Note that problem in (2) is
convex and satisfies the Slater’s condition, and thus strong
duality holds for this problem [17]. Therefore, it can be solved
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by using the Lagrange duality method. The Lagrangian can be
formulated as

L({Qi}, {µi})

=
1

K

K∑
i=1

log2 |IM +HiQiH
H
i |

−
K∑
i=1

µi

tr(Qi)− E0 −
i−1∑
j=1

tr
(
(GH

j Gj − INI )Qj

) ,(3)

where µi for i = 1, · · · ,K is the dual variable associated with
the constraint in (2).

Then, the dual function is defined as g({µi}) =
max{Qi≽0} L({Qi}, {µi}), and the corresponding dual prob-
lem can be written as min{µi≥0} g({µi}). Thus, to optimally
solve (2), we first compute the dual function g({µi}) and then
find the optimal dual variable {µ⋆

i } which minimizes the dual
function. It is worthwhile to note that the Lagrangian (3) can

be rewritten by L({Qi}, {µi}) =
K∑

k=1

Lk(Qk, {µi}), where

Lk(Qk, {µi}) =
1

K
log2 |IM +HkQkH

H
k | − tr(AkQk), ∀k,

with Ak ,
K∑
i=k

µiINI
−

K∑
i=k+1

µiG
H
k Gk.

Since Lk(Qk, {µi}) is a function of Qk and is independent
of other Qj for k ̸= j, the dual function can be identified by
addressing the following K independent optimization prob-
lems:

max
Qk≽0

1

K
log2 |IM +HkQkH

H
k | − tr(AkQk), ∀k. (4)

Note that Ak in (4) must be a positive definite matrix, since
otherwise the dual function becomes infinity. For this reason,

the dual variables µi for i = 1, · · · ,K must satisfy
K∑
i=k

µi >

K∑
i=k+1

µigk, where gk , λmax(G
H
k Gk) with λmax(X) being

the maximum eigenvalue of a matrix X.
Then, one can prove that the optimal solution to problem

(4) can be obtained as [3]

Q⋆
k = A

−1/2
k ṼkΣkṼ

H
k A

−1/2
k , ∀k, (5)

where Ṽk stands for the right singular vector matrix of
HkA

1/2
k , and the diagonal matrix Σk is defined as Σk =

diag(p̃k,1, · · · , p̃k,T ) with p̃k,l = [1/ log 2 − 1/h̃k,l]
+. Here,

h̃k,l for l = 1, · · · , T represents the singular value of HkA
1/2
k

where T equals T = min(M,NI).
After computing the dual function from (5), it remains to

solve the dual problem min{µi} g({µi}) under the constraints

µi ≥ 0 and
K∑
i=k

µi >
K∑

i=k+1

µigk for i = 1, · · · ,K. To this end,

we employ the subgradient method, e.g., the ellipsoid method
[17]. The subgradient of the dual function g({µi}) with respect

to µi can be calculated as E0 − tr(Q⋆
i )+

i−1∑
j=1

tr(GjQ
⋆
jG

H
j )−

i−1∑
j=1

tr(Q⋆
j ). Then, we summarize an algorithm which optimally

solves problem (2) as below.

Algorithm 1 : Proposed optimal algorithm for problem (2)
in the perfect CSI case

Initialize µi ≥ 0 for i = 1, · · · ,K.
Repeat

Compute Q⋆
k = A

−1/2
k ṼkΣkṼ

H
k A

−1/2
k with given {µi}.

Compute the subgradient of the dual function g({µi}).
Update {µi} using the ellipsoid method.

Until {µi} converge to the prescribed accuracy

IV. IMPERFECT CSI CASE

In the previous section, we assume that the transmitter and
the receiver have perfect CSI for all time slots. In contrast, in
this section, we propose a robust covariance matrix solution
that maximizes the worst-case sum rate performance under
the channel uncertainty model [18] [19]. We first present
the following lemma which is useful for deriving the robust
solution.

Lemma 1: Let us define Πi as the representation of the
energy stored in the energy storage, i.e., a difference between
the harvested energy tr(GiQiG

H
i ) and the recycled energy

tr(Qi). The problem (2) can be equivalently formulated as

max
{Qi≽0},{Πi}

1

K

K∑
i=1

log2 |IM +HiQiHi| (6)

s.t. tr(Qi) ≤
i−1∑
j=0

Πj , ∀i,

tr
(
(GH

i Gi − INI )Qi

)
≥ Πi, ∀i,

Πi ≤ [gi − 1]
+ ·

i−1∑
j=0

Πj , ∀i,

where Π0 , E0 is a constant.
Proof: The proof is similar to Theorem 1 in [5] and thus

omitted here for brevity.
Based on this lemma, we now identify the robust covariance

matrix in the following. First, we assume that the estimated
channel and the estimated error bound at all time slots are
available at the transmitter. In addition, the true channel lies in
an ellipsoid centered at each estimated channel. Then, for the
i-th time slot, the true channels Hi and Gi can be respectively
expressed as

Hi = H̃i +ΦH,i and Gi = G̃i +ΦG,i,

where H̃i and G̃i are the estimated channels for the link
between the transmitter and the receiver and for the loop-back
link, respectively, and ΦH,i and ΦG,i denote errors associated
with the channels Hi and Gi, respectively. In the ellipsoid
model, the error bound sets ΩH,i and ΩG,i can be represented
as [17]

ΩH,i = {ΦH,i : ∥ΦH,i∥2F ≤ ε2H,i},
ΩG,i = {ΦG,i : ∥ΦG,i∥2F ≤ ε2G,i},

where εH,i and εG,i indicate the error bounds for Hi and Gi,
respectively.
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Then, we can reformulate the optimization problem (6) for
the worst case as

max
{Qi≽0}

min
∥ΦH,i∥F ≤εH,i

K∑
i=1

log2 |IM +HiQiH
H
i | (7)

s.t. tr(Qi) ≤
i−1∑
j=0

Πj , ∀i,

min
∥ΦG,i∥F ≤εG,i

tr
((
GH

i Gi − INI

)
Qi

)
≥ Πi, ∀i,

Πi ≤ min
∥ΦG,i∥F ≤εG,i

[gi − 1]
+ ·

i−1∑
j=1

Πj , ∀i.

To solve (7) efficiently, we apply a lower bound on the
determinant as [20]

|IM +HiQiH
H
i | ≥ 1 + tr(HiQiH

H
i ), (8)

where the equality holds when rank(HiQiH
H
i ) ≤ 1. Note that

the bound in (8) becomes tight in the low E0 regime.
By using the epigraph formulation [17], the robust optimiza-

tion problem (7) can be established as

max
{Qi≽0},{ti≥0},{Πi}

K∑
i=1

log2(1 + ti) (9)

s.t. tr(Qi) ≤
i−1∑
j=0

Πj , ∀i,

min
∥ΦG,i∥F ≤εG,i

tr
(
GH

i Gi − INI
)Qi

)
≥ Πi, ∀i, (10)

min
∥ΦH,i∥F ≤εH,i

tr
(
HiQiH

H
i

)
≥ ti, ∀i, (11)

Πi ≤ min
∥ΦG,i∥F ≤εG,i

[gi − 1]
+ ·

i−1∑
j=0

Πj , ∀i, (12)

where ti is introduced for the epigraph formulation
tr(HiQiHi) ≥ ti.

Still, it is not easy to solve (9) due to the minimum operation
with respect to the error matrices ΦG,i and ΦH,i in the
constraints. To this end, we employ the S-procedure technique
[16], which is summarized in the following lemma.

Lemma 2: ( [16] ) For k = 1 and 2, fk(x) is defined as

fk(x) = xHAkx+ 2Re{bH
k x}+ ck,

where Ak ∈ Cm×n represents a Hermitian matrix, bk ∈ Cn×1

indicates a column vector, and ck is a real scalar. Suppose
that there is an some x that satisfies the inequality fk(x) ≥ 0.
Then, the implication f1(x) ≥ 0 ⇒ f2(x) ≥ 0 holds if and
only if there exists a nonnegative number µ such that[

A2 b2

bH
2 c2

]
− µ

[
A1 b1

bH
1 c1

]
≽ 0. �

By applying this lemma, the constraint in (10) can be
derived as

eHG,iQ̃ieG,i + 2Re{gH
i Q̃ieG,i}+ gH

i Q̃igi

−vec(IM )T vec(Qi) ≥ Πi,

eHG,ieG,i ≤ ε2G,i, (13)

where eG,i , vec(ΦG,i), Q̃i , QT
i ⊗ I, gi , vec(G̃i), and

Re{a} accounts for the real value of a. Here, (13) comes
from the identities on matrices A,B, and X as vec(AXB) =
(BT ⊗ A)vec(X), tr(ATB) = vec(A)T vec(B), and (A ⊗
B)T = AT ⊗BT .

Similarly, the constraint (11) can be rewritten by

eHH,iQ̃ieH,i + 2Re{hH
i Q̃ieH,i}+ hH

i Q̃ihi ≥ ti,

eHH,ieH,i ≤ ε2H,i,

where eH,i , vec(ΦH,i) and hi , vec(H̃i). Also, we can
compute the constraint (12) as

min
∥ΦG,i∥F ≤εG,i

λmax

(
(G̃i +ΦG,i)

H(G̃i +ΦG,i)
)

= g̃i − εG,i, (14)

where g̃i , λmax(G̃
H
i G̃i) and (14) can be obtained by setting

ΦG,i = −εG,iui,1v
H
i,1 with ui,1 and vi,1 equal to the left and

the right singular vector of Gi corresponding to the maximum
singular value, respectively.

Combining these results, the robust optimization problem
(7) can be reformulated as

max
{ti},{γi},{νi},
{Qi≽0},{Πi}

K∑
i=1

log2(1 + ti) (15)

s.t. tr(Qi) ≤
i−1∑
j=0

Πj , ∀i,

[
γiI+ Q̃i Q̃igi

gH
i Q̃i −γiε

2
G,i −Πi + gH

i Q̃igi − qi

]
≽ 0, ∀i,[

νiI+ Q̃i Q̃ihi

hH
i Q̃i −νiε

2
H,i − ti + hH

i Q̃ihi

]
≽ 0, ∀i,

Πi ≤ (g̃i − εG,i − 1)
+ ·

i−1∑
j=0

Πj , ∀i,

γi ≥ 0, νi ≥ 0, ti ≥ 0, ∀i,

where qi , vec(I)T vec(Qi). Note that the problem in (15)
is convex, and it can be efficiently solved via existing convex
solvers such as CVX.

V. SIMULATION RESULTS

In this section, we provide numerical results for evaluating
the average sum rate performance of the proposed schemes.
For the simulations, we employ the Rayleigh fading model for
Hi with the average pathloss 60 dB, and the Rician fading for
the loop-back channel Gi with the K factor of K = 5 dB and
the average pathloss 10 dB. Also, we set the noise variance
as −60 dBm. We compare our proposed algorithms with the
following baseline schemes.

• Water-filling: The covariance matrices are designed with-
out considering the loop-back channels Gi for i =
1, · · · ,K, while the transmitter still harvests energy
through the loop-back channel. In other words, for the
i-th time slot, Qi is determined as Qi = ViDiV

H
i ,

where Vi stands for the right singular vector matrix of
the channel Hi and the diagonal matrix Di is obtained by
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Fig. 2. Average sum rate performance as a function of E0 for the perfect
CSI case with NI = NE = M = 6

the conventional water-filling algorithm under the energy
constraint tr(Qi) ≤ Bi, i.e, all the available energy is
consumed at each time slot.

• no ER: The self ER technique is not employed at the
transmitter, and thus the system reduces to the conven-
tional point-to-point MIMO by setting K = 1.

Fig. 2 depicts the average sum rate performance as a
function of the initial energy E0 for the perfect CSI case with
NI = NE = M = 6. We can first see that the proposed
optimal algorithm outperforms the conventional schemes and
performance gap increases as K grows. Also, it is emphasized
that the performance of the water-filling scheme decreases as
K gets larger, since the loop-back channels become more
crucial for the sum rate performance. Compared with the
systems which do not adopt the ER, it is confirmed that the
average sum rate of the MIMO systems can be enhanced
by employing the self ER technique at the transmitter. We
can observe from the curve of the water-filling scheme, that
the performance of the ER system becomes worse than that
of the conventional no ER system if the covariance matrix
is not properly optimized. This indicates that the covariance
matrix optimization is important for the ER systems in order
to achieve high spectral efficiency.

In Fig. 3, we illustrate the average sum rate performance as a
function of the number of time slots K for the perfect CSI case
with NI = NE = M = 6. It is interesting to remark that the
performance of the proposed algorithm increases as K grows,
while that of the conventional water-filling scheme decreases,
since the loop-back channel Gi is not considered for the
covariance matrix computation. Therefore, we can conclude
that the loop-back channels should be taken into account for
designing the ER systems.

Next, in Fig. 4, we evaluate the average sum rate perfor-
mance of the proposed scheme in Section IV for the imperfect
CSI case with NI = NE = 6, M = 1 and K = 6.
Here, we employ the same error bounds for each time slot
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Fig. 4. Average sum rate performance as a function of E0 for the imperfect
CSI case with NI = NE = 6, M = 1 and K = 6

(ε = εH,i = εG,i, ∀i). For comparison, the performance of
the proposed optimal, no ER and the water-filling schemes
for the perfect CSI case is also plotted. From the figure, it
can be shown that the proposed robust design achieves good
performance in the presence of estimation errors. Also, we
can see that the proposed robust precoding method offers a
significant performance gain over the conventional schemes.
Thus, the proposed self ER MIMO systems provide substan-
tially improved average sum rate performance.

VI. CONCLUSION

In this paper, we have examined the ER based point-to-
point MIMO communication systems where the transmitter
harvests energy from its own transmitted RF signals. In order
to maximize the sum rate performance, we jointly optimize the
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transmit covariance matrices at all time slots in two different
cases. First, in the perfect CSI case, the globally optimal
algorithm has been provided for the sum rate maximization
problem. Next, for the imperfect CSI case, we have presented
the robust covariance matrix optimization method which max-
imizes the worst case sum rate performance. From numerical
results, it has been confirmed that the proposed algorithms
significantly outperform the conventional schemes.
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