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Abstract 

This paper proposes a new class of Space-Time Block Codes, 

which is manipulated from the existing transmit diversity schemes. 

We analyze the performance and the receiver complexity of the 

proposed scheme and confirm that the new diversity scheme can 

yield performance gain over other existing four-transmit antenna 

cases. By relaxing the diversity criterion on code designs, the 

proposed space-time code provides a full transmission rate for 

four-transmit antennas and makes it possible to approach the 

open-loop Shannon channel capacity. Outage capacity and 

simulation results are used to show that substantial improvements 

in performance while maintaining a simple linear processing 

receiver structure are obtained in frequency selective channels. 

 

1. Introduction 

Recently, many researchers have studies using multiple antennas 

with space-time codes (STC) since a simple transmit diversity 

concept was introduced by Alamouti [1]. The STC techniques are 

used to improve the performance of multiple-input multiple-output 

(MIMO) systems. The potential gains of the STC/MIMO system 

are presented in [2,3,4,5,6,7,8,9]. A core idea is the space-time 

signal processing in which the time domain operation is 

complemented with the spatial dimension processing inherent in 

the use of spatially distributed multiple antennas. Mostly, 

space-time coding schemes have been developed assuming flat 

fading channels. As the increasing demand for higher bit rates 

leads to wideband communications, the wireless channels become 

frequency selective. It has been presented in [10] [11] that 

multicarrier modulation realized by orthogonal frequency division 

multiplexing (OFDM) is well suited for such broadband 

applications. The OFDM modulation technique divides the total 

available bandwidth into a number of equally spaced frequency 

bands. By applying a proper cyclic prefix, the individual 

subchannels can be considered to show flat fading channel 

characteristics. Furthermore, OFDM can exploit frequency 

diversity by applying channel coding.∗ 

The construction of space-time coding schemes is to a large 

extent a trade-off among the following three goals: maximizing the 

error performance (i.e., diversity order and coding gain), 

maximizing the code rate and maintaining a simple decoding [5] 

[12]. For flat fading channels, optimizing the diversity order is the 

most critical point in designing STC. In contrast, for frequency 

selective channels where frequency diversity is available, the full 
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diversity becomes a less important issue. Therefore, a better 

strategy is to loosen the full diversity condition and complement 

the loss of the diversity order by the channel frequency diversity 

exploited by OFDM-based systems so that we can concentrate on 

the full rate and maximize the coding gain instead. In this paper, 

we propose pseudo-orthogonal space-time block codes for 

MIMO-OFDM systems over frequency-selective channels. It will 

be shown that the proposed pseudo-orthogonal scheme provide 

additional coding advantage while maintaining a simple decoding 

algorithm. 

The organization of the paper is as follows. In section II, we 

construct a new class of space-time block codes (STBC) and derive 

a receiver algorithm. In section III, we analyze the performance of 

the new scheme. In section IV, we compute the outage capacity of 

the proposed STBC and compare it to other alternative schemes. In 

section V, the simulation results are presented comparing to other 

competing designs. Finally, the paper is terminated with 

conclusions in section VI. 

  

2. A New Class of Space-Time Block Code 

In this section, we introduce a new class of space time block 

code. We relax the definition of complex orthogonal designs in [2] 

to obtain the full rate STBC. Here we define a pseudo-orthogonal 

matrix as follows. 

Definition 1. A pseudo-orthogonal
1
 (PO) design in variables 

1 2, , , nx x xK  is an n by n matrix C  such that 

● The entries of C  are * * *

1 1 2 2, , , , , , nx x x x x x± ± ± ± ± ±K n  

●
H =C C D , where D  is a diagonal matrix with ( ),i i th 

diagonal element of the form ( )2 2 2

1 1 2 2

i i i

n nl x l x l x+ + +K , 

with non-negative coefficients 1 2, , ,i i i

nl l lK  such that 

1 2

i i i

nl l l n+ + + =K  

where H  and *  denote the complex-conjugate and transpose 

and the complex conjugate respectively. In contrast to the 

definition of orthogonal designs in [2], the pseudo-orthogonal 

schemes allow zero coefficients 
i

jl  such that D  is no longer an 

identity matrix. 

For simplicity, we focus on the four transmit antenna case in this 

paper. The CDMA transmit diversity method introduced in [13] 

satisfies the pseudo-orthogonal code design conditions. We start 

from the Alamouti scheme [1] as a base matrix to build higher 

order matrices. Let us first define the code matrix ijX  as 
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           * *

i j

ij

j i

x x

x x

 
=  − 

X .             (1) 

Then, ijX  is a well known Alamouti code matrix. We extract 

some properties from the Alamouti matrix (1) and 2x2 Hadamard 

matrix in [14].  

Then, the transmission matrix is given as 

   

1 2 3 4

* * * *

12 34 2 1 4 3

12 34 1 2 3 4

* * * *

2 1 4 3

x x x x

x x x x

x x x x

x x x x

 
 − −   = =   − − − 
 

− −  

X X
C

X X
.   (2) 

The code matrix (2) satisfies the pseudo-orthogonal code design 

conditions such that 

1

1†

2

2

0 0 0

0 0 0

0 0 0

0 0 0

d

d

d

d

 
 
 =
 
 
  

C C  

where ( )2 2

1 1 22d x x= +  and ( )2 2

2 3 42d x x= + . It is 

straightforward to check that the minimum rank of the matrix 

( )1 1 2 2 3 3 4 4, , ,c e c e c e c ex x x x x x x x− − − −C  as in [3] is two. For 

simplicity, we assume the single receive antenna case. Let us 

define the received signal vector r , the code matrix C , and the 

noise vector n . Then the received signals can be written as 

           

1 1

2 2

3 3

4 4

r h

r h

r h

r h

   
   
   = = +
   
   
      

r C n           (3) 

where we assume that n  is a vector of additive noise terms, 

which are independent and identically-distributed complex 

Gaussian with variance 
2 1nσ = . The channel coefficient ih  is 

the path gain from the transmit antenna i  to the receive antenna. 

The path gains are modeled as samples of independent complex 

Gaussian random variables with variance 0.5 per dimension. This 

choice models a Rayleigh fading environment. 

By taking the complex-conjugate operation on the second and 

the fourth element of r  in (3), we obtain 

             = +r Hx n% %               (4) 

where 
* *

1 2 3 4

T

n n n n =  n% , [ ]1 2 3 4

T
x x x x=x  and  

* *

1 2 3 4

T

r r r r =  r% . Here H  is a channel matrix with space 

(in columns) and time (in rows) dimensions defined as  

1 2 3 4

* * * *

2 1 4 3

1 2 3 4

* * * *

2 1 4 3

h h h h

h h h h

h h h h

h h h h

 
 − − =
 − −
 
− −  

H . 

This channel matrix inherently possesses a pseudo-orthogonal 

property such that 

      

1

1

2

2

0 0 0

0 0 0

0 0 0

0 0 0

H

γ
γ

γ
γ

 
 
 =
 
 
  

H H         (5) 

where ( )2 2

1 1 22 h hγ = +  and ( )2 2

2 3 42 h hγ = + . 

 We are now ready to begin linear processing at the receiver using 

the vector channel model in (4). We will assume that the 

realization of H  is known to the receiver, but not to the 

transmitter. The MIMO channel can be decomposed into parallel 

channels by applying the channel matched filter 
HH , and this 

results in  

            H= = +r H r Dx n
) )

%             (6) 
where D  is a diagonal matrix ( )1 1 2 2diag , , ,γ γ γ γ=D  and  

H=n H n
)

% . 

 The estimated signal x
)

 can then be obtained as  
1 1− −= = +x D r x D n
) ))

. 
 Computing the noise autocorrelation matrix yields  

( )( )1 1

1 1

1.

H

nn

H H

E

E

− −

− −

−

 =   

 =  

=

R D n D n

D H nn HD

D

) )

% %  

The diversity gains corresponding to recovering 1 2( , )x x  and  

3 4( , )x x  are 1γ  and 2γ , respectively. Thus the diversity gain 

reduces from ( )2 2 2 2

1 2 3 4h h h h+ + +  to ( )2 2

1 22 h h+  or 

( )2 2

3 42 h h+  compared to the full diversity scheme. Note that 

the proposed scheme achieves the full rate at the expense of the 

reduced transmit diversity. We will later observe that in spite of the 

partial transmit diversity, the proposed scheme outperforms the full 

diversity designs for frequency selective channels. 

It has been shown [2] that transmission using orthogonal designs 

provides a full diversity and a simplified decoding algorithm and 

also that for more than two transmit antennas there exists no 

complex orthogonal code which achieves the full diversity and the 

full rate at the same time. Therefore, for a system employing more 

than two transmit antennas, either the diversity order or the 

transmission rate should be sacrificed. In order to achieve the full 

rate, the proposed pseudo-orthogonal codes do not fully satisfy the 

complex orthogonal code design conditions in [2]. Nonetheless, we 

maintain an orthogonality property so that the proposed code can 

still employ a very simple maximum-likelihood decoding algorithm 

at the cost of the partial diversity order.  

Suppose a set S consisting of all possible symbol vectors x . 

Then the size of S  is equal to 
4M , where M  represents the 

number of constellation points. The ML detection for the 

transmitted symbol vector in (4) can be obtained as 

          
2

argmin
S∈

= −
x

x r Hx
)

) )
% .          (7) 

Using the fact that H  is pseudo-orthogonal as shown in (5), the 

ML solution yields 
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2
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argmin
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H

S

H H

S

H

S

H
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∈

∈
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∈
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    (8) 

Thus the ML decoding rule in (7) is reduced to a simple 

decorrelating expression in (8). 

 Let us define ih  as the i th column vector in H . Then the 

decision metric for detecting 1x  or 2x  is obtained from (8) as 

2

1

H

i ixγ−h r% , 

And similarly the metric for detecting 3x  or 4x  is 

2

2

H

j jxγ−h r% . 

It is also straightforward to see that the decision rule can be 

extended to multiple receive antenna. The decoding scheme for the 

pseudo-orthogonal design is as simple as the one established for 

the complex orthogonal designs in [2]. Also soft output for the 

transmitted symbol is readily available. These soft decisions are fed 

to the outer channel code (e.g., convolutional codes) to yield better 

performance. 

 

3. Code Design Criteria 

We analyze the proposed STBC in terms of the performance 

criteria presented in [3]. The design criteria for space-time codes 

are fully formulated through the codeword difference matrix ceB , 

which is defined as ce c e= −B C C . Here cC  is the transmitted 

code matrix and eC  is the erroneously detected matrix. The 

probability of transmitting the codeword ( 1 1(1), , ( ),c c l=c K K  

), ( ), , (1)n lc l cK  and deciding erroneously in favor of a different 

codeword ( )1 1(1), , (1), , ( ), , ( )n ne e e l e l=e K K K  is given by 

[3] 

( )

( )
2

1 1 1

, 1, 2, , , 1,2, ,

exp ( ) ( )
4

ij

m l n
s

ij i i

j k io

P h i n j m

E
h c k e k

N = = =

→ = =

  
≤ − −     

∑∑∑

c e K K

 

where n , m  and l  represent the number of transmitters, 

receivers, and the packet, respectively. Under the assumption of 

Rayleigh fading channels, the above error probability bound can be 

rewritten after some algebra as 

      ( )
1 4

rmm
r

s

i

i o

E
P

N
λ

−−

=

  
→ ≤   

   
∏c e      (9) 

where r  denotes the rank of matrix 
†

ce ce=A B B  and iλ  

denotes nonzero eigenvalues of A . Thus a diversity advantage of 

rm  and a coding advantage of ( )1/

1 2

r

rλ λ λK  are achieved. 

Since the matrix ceB  has an equivalent property with the matrix 

A in the sense of rank and determinant, we proceed to investigate 

the matrix ceB  to minimize the pairwise error probability (PEP), 

which determines the performance at high signal-to-noise ratios. 

 Concentrating on the four transmit antenna systems, we compare 

with other complex orthogonal designs. Let us define P  and O  

as the pseudo-orthogonal designs and the orthogonal designs, 

respectively. Then the diversity order is 

2
2 2

1

4
2

3 2

0
min rank min rank 2

0 0

0 0
2 2.

0

H

ce ce ck ek
c e c e

k

ck ek

k

P P x x

x x

≠ ≠
=

=

  
  = −   

 

 
+ − = 

 

∑

∑

I

I

 

It is now clear that the diversity of the pseudo-orthogonal designs 

is 2 while the diversity of orthogonal designs is 4. 

 We recognize here that the multiplicative term 2 in diagonal terms 

makes a coding advantage in terms of the determinant criteria for 

the pseudo-orthogonal codes. The evaluations of the determinant 

criteria for P  and O  then yield 
4

4
2

1

8

mindet min

for 1, , 4

H

ce ce ck ek
c e c e

k

ck ek

O O x x

x x k

≠ ≠
=

   = −    

= − =

∑

K

 

and 
2

2
2

1

2
4

2

3

4

mindet min 4

4 for 1, , 4

H

ce ce ck ek
c e c e

k

ck ek

k

ck ek

P P x x

x x

x x k

≠ ≠
=

=

   = −    

 
⊗ − 
 

= − =

∑

∑

K

 

where ⊗  denotes product between nonzero values and leave out 

the zero values. 

 The minimum value of ( )1/

det
r

H

ce ce
  C C  determines the 

coding advantage in (9). Therefore, the coding gain of the 

orthogonal design O  is 
2

ck ekx x−  whereas the coding gain of 

the pseudo-orthogonal design P  is 
2

2 ck ekx x− . Consequently, 

the pseudo-orthogonal designs have a 3dB coding gain over the 

orthogonal design. 

 

4. Channel Capacity 

In this section, we analyze the channel capacity for the 

proposed scheme and compare with other alternatives. We require 

that the total transmitted power is held constant independently of 

the number of transmit antennas. Components of x  are assumed 

to be independent and identically distributed. Then we have 

H

NE
N

ρ
  = xx I  

where ρ  is the SNR at the receiver and NI  denotes the identity 

matrix of order N . 

 The capacity of systems with N  transmit antennas is given by 

[4] 

        
2

2

1

log 1 b/s/Hz.
N

N i

i

C h
N

ρ

=

 
= + 

 
∑      (10) 

Note that the capacity NC  approaches the Gaussian capacity 

2log (1 )ρ+  as N  becomes larger [15]. In practice, the random 



 

 

variable 
2

1

1 N

ii
h

N =∑  is already close to 1 when N  is as small 

as 4 [3]. This motivates us to explore a compromise between the 

full rate and full diversity. 

 The Alamouti scheme [1] achieves the open-loop capacity of 

(10) with 2N =  
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Figure 1. Outage capacities compared to other alternative schemes 
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2log 1
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. 

 We can calculate the channel capacity of the pseudo-orthogonal 

scheme using the vector channel model (6). The capacity is then 

given by  

2log det 1
4

POC
ρ = + 

 
D . 

Since D  is a diagonal matrix, it follows  

( )

( )

2 2

1 2

2

2 2

3 4

2

1
log 1

2 2

1
log 1 .

2 2

PO

h h
C

h h

ρ

ρ

 +
 = +  
 

 +
 + +  
 

 

 We now investigate the outage capacity to illustrate the impact on 

the systems. The ε  outage capacity b  is defined as [15] 

( ) ( ): max such that
out
C b b b P bε ε= ≤    

where ( )P b  denotes the probability that the data rate b  can 

not be supported. The outage capacity is calculated by 

Monte-Carlo simulations and provides additional insight into the 

performance characteristics of different designs [17]. The 10% 

outage capacities of the different schemes are plotted in Figure 1. 

The channel capacities for the quasi-orthogonal codes and 

orthogonal codes are obtained from [17]. For comparison purposes, 

this figure includes the system with two transmit antennas and one 

receive antenna as a reference. No other alternatives outperform 

the pseudo-orthogonal design except for 4x1 open-loop capacity, 

which is merely a theoretical case. We emphasize that the 

pseudo-orthogonal design employs much simpler decoding 

algorithm than any other alternatives for four transmit antennas. 

 

5. Simulation Results 

In this section, we present the simulation results for the 

four-transmit antenna systems. The system parameters are 

summarized in Table I. The binary convolutional code polynomials 

(133, 171) in octal notation are used throughout the simulation. 

 

 3bps/Hz 2bps/Hz 

Rate 3/4 Orthogonal 
64QAM 

Rc=2/3 

16QAM 

Rc=2/3 

Quasi-orthogonal 
16QAM 

Rc=3/4 

16QAM 

Rc=1/2 

Pseudo-orthogonal 
16QAM 

Rc=3/4 

16QAM 

Rc=1/2 

Table I. System Parameters 
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Figure 2. Performance comparison to other alternative schemes 
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Figure 3. Performance comparison to other alternative schemes 

 

The spectral efficiencies of 2bps/Hz and 3bps/Hz are assumed. We 

use a typical indoor channel model with a 5 tap power delay profile 

having exponentially decayed fading characteristics where each ray 

is assumed to be independently Rayleigh fading. The OFDM 

modulation defined in the 802.11a standard with 64 point FFT are 

used. One OFDM symbol duration is 4 sµ  including the 0.8 sµ  



 

 

guard interval. This specification is designed to handle the root 

mean square (RMS) delay spread up to 250ns. The 5 tap multipath 

channel used in the simulations accounts for approximately the 

RMS spread of 100 ns. The length of the frame is assumed to 

consist of four OFDM symbol. It has been shown [18] that a 

rotation of constellation results in a performance improvement for 

the quasi-orthogonal codes. A optimal rotation of constellation 

obtained in [18] is used for the quasi-orthogonal codes. For the 

rate 3/4 orthogonal codes, we have used the code matrix in [19].  

 First, Figure 2 shows the comparison between different schemes 

with 3 bps/Hz in a 4 by 1 system. It is observed from the plot that 

the proposed scheme exhibits about a 1dB gain over the orthogonal 

designs and performs as good as quasi-orthogonal codes at 1% 

FER. Considering the receiver complexities, the pseudo-orthogonal 

codes with a simple decoding algorithm are much more attractive 

than the quasi-orthogonal codes which require the more complex 

decoder structure. It is also interesting that there is no distinctive 

slope change among different schemes in Figure 2. This is due to 

the fact that the frequency selective channel contains some level of 

frequency diversity inherent in the channel with OFDM.  

The performance of OFDM-based systems can be further 

improved by applying lower rate channel coding exploiting 

additional frequency diversity. The frequency selective channels 

have more dramatic effect on the performance of 

pseudo-orthogonal codes. The frequency diversity can complement 

the partial transmit diversity of the pseudo-orthogonal codes. 

Figure 3 shows that the performance gain of the pseudo-orthogonal 

codes over the other schemes increases as lower channel coding 

rate is adopted. 

 The simulation results justify our code design that we can benefit 

from a reasonable compromise between a full rate and a full 

diversity. They also confirm that the coding gain shown in section 

III enhances the performance in the frequency selective channels, 

where a coding gain plays more important role than a diversity gain. 

Consequently, the simulation results show that a better 

performance is possible when more frequency diversity exists in 

the channel. 

 

6. Conclusion 

In this paper, a new class of space-time block codes has been 

presented and evaluated for frequency selective channels. We have 

shown that the proposed scheme has a simple decoding structure 

and outperforms the existing other orthogonal designs for four 

transmit antenna systems. Furthermore, the computer simulation 

demonstrates that we need to consider the channel characteristics 

and take a compromise between the full rate and the full diversity. 

We have used the design criteria to justify the improvement of the 

performance for the pseudo-orthogonal. The proposed scheme can 

be generalized to the systems with larger number of transmit 

antennas. 
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