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Modulo Loss Reduction for Vector Perturbation Systems
Hyeon-Seung Han, Seok-Hwan Park, Sunho Lee, and Inkyu Lee, Senior Member, IEEE

Abstract—In this letter, we present an improved precoding
technique which reduces a modulo loss in vector perturbation
with low complexity. Instead of searching perturbation vectors
in the infinite lattice, the proposed scheme restricts the search
range by utilizing the distribution of the perturbation vector
depending on transmitted data. As a result, we can achieve
significant complexity savings at the transmitter while providing
better performance compared to the original vector perturbation.

Index Terms—Multiple antennas, precoding, vector perturba-
tion.

I. INTRODUCTION

IN high data rate wireless systems, multiple-input multiple-
output (MIMO) techniques have received considerable at-

tention. The use of multiple antennas at both transmitter and
receiver in single-user MIMO channels has been shown to
improve the system throughput and capacity [1][2]. More
recently, MIMO broadcast channels [3][4][5] have been stud-
ied as an important research topic. In the MIMO broadcast
channel, a base station employs multiple antennas to commu-
nicate with several co-channel users in the same frequency
and time slots. Therefore, it is necessary to eliminate co-
channel interference without receiver cooperation. A simple
channel inversion technique was proposed to eliminate the
co-channel interference and allow independent signals to be
directed to various users [6]. However, the channel inversion
cannot approach the capacity due to noise enhancement.

To enhance the performance, the vector perturbation was
introduced in [7], which adopts a modulo operator at both
transmitter and receiver. With the modulo operator, the original
constellation can be represented as the multiples of constel-
lation in the infinite lattice. Then any point in the infinite
lattice can be recovered in the original constellation at the
receiver. Utilizing this property of the modulo operator, the
transmitter gains a degree of freedom to choose an element
in the multiple of constellation to be transmitted as a desired
value for the modulo operator input. In the vector perturbation
technique, the data is perturbed such that the transmit power
is minimized. Finding a perturbation vector is a lattice closest-
point problem that can be solved via sphere encoder [8][9].
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It is well known that the modulo operator causes a modulo
loss. For example, Tomlinson-Harashima precoding (THP)
[10][11] has been shown to suffer from a 4-5 dB modulo
loss at low signal-to-noise-ratio (SNR) [12], and a similar
loss is observed in the vector perturbation. To eliminate such
a modulo loss, we characterize the effect of the modulo loss
which results from the increased number of nearest neighbors.
Using the anti-symmetry property [13] of the perturbed data,
we restrict the range of perturbation vectors in the transmitter.
Such a restriction results in a reduction in both complexity of
finding perturbation vectors and the modulo loss. Thus the
proposed scheme accomplishes unusual features that better
performance is obtained with reduced complexity compared to
conventional schemes. For the coded system with four transmit
antennas and four users, the proposed scheme achieves a 0.2
dB gain with 4QAM over the original vector perturbation.
Moreover, the proposed scheme provides a complexity reduc-
tion of 38% compared to the original vector perturbation in
terms of the average number of search candidates.

This letter is organized as follows: In Section II, we present
the system model of MIMO broadcast channels and review the
conventional vector perturbation techniques. In section III, we
propose a low complexity vector perturbation scheme with
a reduced modulo loss based on the anti-symmetry property.
Next, Sections IV demonstrates the simulation results. Finally,
the conclusions are presented in Section V.

Throughout this letter, (.)𝑇 and (.)𝐻 denote transpose and
complex conjugate transpose, respectively. The subscript (⋅)𝑘
and ∣∣.∣∣2 indicate the 𝑘th element in vectors and the Frobenius
norm, respectively.

II. CONVENTIONAL VECTOR PERTURBATION SYSTEMS

We consider a multiuser downlink system where a base
station with 𝑀 transmit antennas transmits independent data
streams to 𝐾 users with a single antenna. Let us define the
𝑀 dimensional complex transmitted signal vector x, and the
𝐾 dimensional complex received signal vector y. Then, the
corresponding complex vector equation can be written as

y = Hx+ n (1)

where n ∈ ℂ𝐾×1 is the white Gaussian noise vector at the
users with zero mean and the covariance matrix 𝜎2

𝑛I𝐾 , and
the channel matrix H consists of 𝐾 × 𝑀 independent and
identically distributed (i.i.d.) complex Gaussian coefficients
with zero mean and unit variance.

Equivalently, the real-valued representation of system (1) is
given as

y = Hx+ n (2)
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where y = [ℜ[y]𝑇 ℑ[y]𝑇 ]𝑇 , x = [ℜ[x]𝑇 ℑ[x]𝑇 ]𝑇 , n =
[ℜ[n]𝑇 ℑ[n]𝑇 ]𝑇 , and

H=

[
ℜ[H] −ℑ[H]

ℑ[H] ℜ[H]

]
.

The desired signal vectors for 𝐾 users are denoted as u =
[𝑢1, 𝑢2, ⋅ ⋅ ⋅ , 𝑢𝐾 ]𝑇 which is chosen from an 𝑀 -ary quadrature
amplitude modulation (QAM). In the channel inversion, the
transmit signal vector is selected as

x =
1√
𝛾
Pu (3)

where P is the right pseudoinverse of H, i.e., P =

H
𝐻
(HH

𝐻
)−1 and 𝛾 = ∣∣Pu∣∣2 denotes the normalization

factor to satisfy the transmit power constraint. Here, 1/
√
𝛾

can be considered as a channel gain.
After passing through the channel, the 𝑘th user’s received

signal can be written as

𝑦𝑘 =
1√
𝛾
𝑢𝑘 + 𝑛𝑘

where 𝑦𝑘 is the 𝑘th user’s received signal, 𝑢𝑘 denotes the 𝑘th
user’s desired signal, and 𝑛𝑘 represents the 𝑘th user’s additive
noise. We assume that each user knows 𝛾 [7]. Here, 𝛾 can be
very large on ill-conditioned channels, and large 𝛾 degrades
the performance.

To reduce 𝛾, the vector perturbation technique is proposed
in [7] to adopt

x =
1√
𝛾
P(u+ 𝜏 l) (4)

where l is a 𝐾 dimensional complex vector with real and
imaginary integer parts, a positive real number 𝜏 denotes a
design parameter that may be chosen to provide a symmetric
decoding region around every signal constellation point, and
𝛾 = ∣∣P(u + 𝜏 l)∣∣2 represents the normalization factor. The
integer vector l which minimizes 𝛾 can be found as

l = arg min
l
′
⊂ℤ𝐾+jℤ𝐾

∥P(u+ 𝜏 l
′
)∥2. (5)

To solve (5), the sphere encoder was introduced in [8], which
requires exponential complexity in the number of users on
average [14].

At the receiver, the received signal for the 𝑘th user becomes

𝑦𝑘 =
1√
𝛾
(𝑢𝑘 + 𝜏𝑙𝑘) + 𝑛𝑘. (6)

To remove the effect of the integer multiple of 𝜏 , the modulo
operation is employed as

𝑓𝜏 (𝑦) = 𝑦 −
⌊
𝑦 + 𝜏/2

𝜏

⌋
𝜏

where the function ⌊𝑥⌋ is the largest integer less than or equal
to 𝑥.

TABLE I
PROBABILITY OF PERTURBATION VECTORS (𝑀 = 𝐾 = 4, 4QAM)

Original vector perturbation
𝑝(𝑙𝑘∣𝑢𝑘 = −1) 𝑝(𝑙𝑘∣𝑢𝑘 = 1)

𝑙𝑘 = −1 0.0200 0.1859
𝑙𝑘 = 0 0.7941 0.7941
𝑙𝑘 = 1 0.1859 0.0200

Lattice limit
𝑝(𝑙𝑘∣𝑢𝑘 = −1) 𝑝(𝑙𝑘∣𝑢𝑘 = 1)

𝑙𝑘 = −1 0 0.1926
𝑙𝑘 = 0 0.8074 0.8074
𝑙𝑘 = 1 0.1926 0

TABLE II
PROBABILITY OF DIFFERENT WEIGHTS (𝑀 = 𝐾 = 4, 4QAM)

Weight of Candidates 𝐿 𝑝(l ∈ Candidate Set)

𝑤 = 0
∑0

𝑖=0 8C𝑖 = 1 0.1806
𝑤 ≤ 1

∑1
𝑖=0 8C𝑖 = 9 0.5252

𝑤 ≤ 2
∑2

𝑖=0 8C𝑖 = 37 0.8129
𝑤 ≤ 3

∑3
𝑖=0 8C𝑖 = 93 0.9502

𝑤 ≤ 4
∑4

𝑖=0 8C𝑖 = 163 0.9911
𝑤 ≤ 5

∑5
𝑖=0 8C𝑖 = 219 0.9990

𝑤 ≤ 6
∑6

𝑖=0 8C𝑖 = 247 0.9999
𝑤 ≤ 7

∑7
𝑖=0 8C𝑖 = 255 1.000

𝑤 ≤ 8
∑8

𝑖=0 8C𝑖 = 256 1.000

III. PROPOSED LATTICE LIMIT SCHEME

In this section, we present a new search scheme, which is
called the lattice limit algorithm, achieving lower complexity
and better performance compared to the original vector per-
turbation. First, we introduce the lattice limit using the anti-
symmetry property [13]. Next, we characterize the modulo
loss of the vector perturbation which degrades the perfor-
mance. Finally, the complexity comparison for the original
vector perturbation and the lattice limit is presented.

A. Proposed method

In [13], it was shown by simulation that the conditional
probability of perturbation vectors and data vectors has an anti-
symmetry property. As we observe in Table I, elements of the
perturbation vector mainly consist of −1, 0, and 1 for the 𝑀 =
𝐾 = 4 system with 4QAM. Furthermore, when the element of
transmit data has a positive sign, elements of the perturbation
vector are mostly selected from −1 and 0. On the contrary,
when the element of the transmit data is negative, elements
of the perturbation vector are mostly chosen as +1 and 0.
Utilizing this anti-symmetry property, our proposed scheme
limits the search range of the perturbation vector based on
the sign of the transmit data. In other words, we restrict the
search range to 𝑙𝑘 ∈ {0,−sgn(𝑢𝑘)} for the proposed lattice
limit scheme.

Let us denote 𝐿 as the candidate size. By limiting the
search size in the proposed scheme, the infinite search set
of the original vector perturbation can be reduced to 𝐿 = 22𝐾

candidates for the system with 𝐾 users, since 2𝐾 elements
in real-valued vectors have two choices. Thus, perturbation
vectors can be obtained within a limited search size for the
proposed lattice limit scheme, whereas the original vector
perturbation needs the infinite size.
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Fig. 1. Effective constellations for proposed scheme with 4QAM.

Note that the distribution of the perturbation vectors changes
in the proposed scheme. Table I shows the new distribution
for the lattice limit obtained from simulations. For example,
if we transmit 𝑢𝑘 = 1, then 𝑙𝑘 = 1 will not be selected in our
proposed lattice limit.

Let 𝑤 denote the weight of a vector, which is the number
of nonzero elements in perturbation vectors. We can further
reduce the candidate size using the fact that the perturbation
vector with large weights are seldom selected. The probability
that the perturbation vector has the weight 𝑤 = 𝑖 becomes

𝑝(𝑤 = 𝑖) = 2𝐾C𝑖 ⋅ 𝑝(𝑙𝑘 ∕= 0)𝑖 ⋅ 𝑝(𝑙𝑘 = 0)2𝐾−𝑖. (7)

Thus, the probability of 𝑤 ≤ 𝑗 can be computed as the sum
of (7)

𝑝(𝑤 ≤ 𝑗) =

𝑗∑
𝑖=0

𝑝(𝑤 = 𝑖).

Table II shows the sum of the probability of different
weights for the case of four transmit antennas and four users
with 4QAM. Considering that 𝑝(𝑤 ≤ 2) is 0.8129, we may
choose the perturbation vector on the candidates which have
a weight 𝑤 less than or equal to two with a little loss on
the performance. The search size of the candidates for this
case is only 37, so we can search the perturbation vectors
with reduced candidate size. The case of 𝑤 ≤ 8 achieves the
best performance for the proposed scheme. Also, simulation
results indicate that 𝑤 ≤ 2 shows a good tradeoff between
performance and complexity. Thus, we will consider two cases
of 𝑤 ≤ 2 and 𝑤 ≤ 8 in the following.

B. Modulo Loss for Vector Perturbation

Now, we will explain a loss of the vector perturbation
caused by the modulo operation and address that the proposed
scheme can compensate for this loss. When compared with
the performance of the standard pulse-amplitude modulation
(PAM) on an additive white gaussian noise channel, the THP
incurs some non-negligible performance losses. In [15], the
performance losses of the THP are categorized into three
classes: a shaping loss, a modulo loss and a power loss. The
modulo loss is caused by the modulo operation at the receiver.
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Fig. 2. Comparison in simplified channel models with a rate 1/2 turbo code.

Due to noise corruption, received symbols at the boundary of
a constellation may be mistaken for symbols at the opposite
boundary of the constellation, which may result in the modulo
loss.

The vector perturbation experiences similar modulo losses,
since the receiver adopts the same modulo operation and the
received symbol is viewed as multiple representations of the
same constellation as in the THP. For example, at the channel
inversion, the symbols of the 4QAM have two nearest neigh-
bors, while each boundary symbol at the vector perturbation
is surrounded by four nearest neighbors. In contrast, for the
proposed scheme in Figure 1, the boundary symbols have
two or three nearest neighbors. This change of the number
of nearest neighbors becomes a dominant factor especially for
low SNR regime. Thus for coded systems where the operating
SNR range is usually low, systems with small nearest neighbor
exhibit better performance, and this will be confirmed through
simulation in the following.

Now, we will evaluate the effect of the modulo loss and
the channel gain 1/

√
𝛾 for the original vector perturbation,

the proposed lattice limit scheme, and the channel inversion.
To observe how much modulo loss the vector perturbation
experiences, we employ two simplified channel models. First,
we consider an artificial system which includes the modulo
loss only without the channel gain. As can be seen in the
coded BER results for 4QAM in Figure 2 with a rate 1/2 turbo
code, the lattice limit reduces the modulo loss by 0.6 dB at
a BER of 10−3 compared to the original vector perturbation.
As mentioned earlier, this is due to fact that the lattice limit
has the smaller number of nearest neighbors than the original
vector perturbation. Clearly, the simulation shows that the
lattice limit exhibits a smaller modulo loss than the original
vector perturbation.

Next, we consider a system with the channel gain 1/
√
𝛾

by omitting the modulo operation at both the transmitter
and receiver. The mean values of the channel gain 1/

√
𝛾

are computed as 0.429, 0.425, and 0.313 for the original
vector perturbation, the proposed lattice limit scheme, and
the channel inversion, respectively. Figure 2 shows that the
proposed lattice limit scheme exhibits little loss associated
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TABLE III
COMPLEXITY COMPARISON WITH 10000 CHANNEL REALIZATIONS

(𝑀 = 𝐾 = 4, 4QAM)

Average Number Maximum Number
of Candidate of Candidate

Original vector perturbation 64 5553
Lattice limit (𝐿 = 256) 40 256
Lattice limit (𝐿 = 37) 20 37

with the channel gain compared to the original vector per-
turbation. Moreover, the original vector perturbation and the
lattice limit outperform the channel inversion for the channel
with the channel gain only. Therefore, we can expect that the
lattice limit achieves the better performance than the original
vector perturbation for normal channels which contain both
the channel gain and the modulo operation.

C. Complexity Comparison

In this subsection, we analyze the complexity of the original
vector perturbation and the proposed scheme by counting the
mean and maximum number of candidates. For fair com-
parison of the complexity, the proposed lattice limit scheme
also employ the sphere encoder within limited search size.
Table III shows the complexity comparison of the original
vector perturbation and the lattice limit over 10000 channel
realizations.

As can be seen in Table III, the lattice limit with 𝐿 = 37
and 256 achieve a reduction of 69% and 38% in the average
number of candidates compared to the original vector per-
turbation, respectively. Also, the lattice limit with 𝐿 = 37
and 256 achieve a significant reduction of 99% and 95% in
the maximum number of candidates compared to the original
vector perturbation, respectively. It is important to note that in
practical implementation, the maximum number of candidates
determines the overall complexity. Thus, our proposed scheme
achieves a substantial complexity savings in terms of the
maximum number of candidates.

IV. SIMULATION RESULTS

In this section, we present the coded BER performance
results of the proposed schemes, the original vector pertur-
bation and the channel inversion. We assume independent
fading channels throughout simulations. In all simulations,
a rate 1/2 turbo code with polynomial (15,13) in octal is
employed. The number of decoding iterations is set to 6. One
frame is assumed to consist of 1000 and 2000 information
bits for 4QAM and 16QAM, respectively. The channel input
after passing through the precoder is normalized to 1. Thus,
we define SNR as 1/𝜎2

𝑛. Also we employ 𝑀 = 4 transmit
antennas and 𝐾 = 4 users.

Figure 3 illustrates the results for coded systems with
4QAM and 16QAM. In the case of 4QAM, as expected in the
analysis made above, the lattice limit with 𝐿 = 256 performs
0.2 dB better than the original vector perturbation at a BER
of 10−3. Moreover, the lattice limit with 𝐿 = 37 outperforms
the original vector perturbation. This is due to a fact that
the lattice limit has a smaller modulo loss than the original
vector perturbation. In the case of 16QAM, we can see that
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Fig. 3. Performance comparison with 𝑀 = 𝐾 = 4.

the performance of the lattice limit with 𝐿 = 256 is better
than the original vector perturbation. Also, lattice limit with
𝐿 = 37 achieves almost same the performance as the original
vector perturbation.

V. CONCLUSION

In this letter, we have proposed the lattice limit algorithm
for a multiuser MIMO downlink using the vector perturbation
technique. Instead of finding the perturbation vector in the
infinite lattice, in the proposed scheme, we have restricted a
search range according to the anti-symmetry property. As we
limit the search range, we can identify the integer vector with
much reduced candidate size. Using the fact that the perturba-
tion vectors with large weights are seldom selected, we have
further reduced the candidate size. By adjusting the weight,
we have offered the tradeoff with performance and complexity.
Moreover, we have shown that, since the modulo loss becomes
smaller compared to the original vector perturbation, the
proposed scheme achieves the better performance than the the
original vector perturbation with reduced complexity. Also, we
have investigated the complexity comparison by counting the
average and maximum number of the candidates. We conclude
that our proposed scheme exhibits unusual characteristics that
a better performance gain is obtained with reduced complexity.
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