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Sum-Rate Capacity of Random Beamforming for
Multi-Antenna Broadcast Channels with Other Cell Interference

Sung-Hyun Moon, Sang-Rim Lee, and Inkyu Lee, Senior Member, IEEE

Abstract—In this letter, we analyze the sum rate of random
beamforming (RBF) for downlink multi-antenna systems in the
presence of other cell interference (OCI). Employing extreme
value theory, an expression of the asymptotic ergodic sum rate
with a large number of users is derived from the limiting
distribution of the sample maximum of the received signal-to-
interference-plus-noise ratio. Based on our result, the scaling
law of multiuser diversity gain is also exhibited in the context
of RBF systems with the OCI, which is shown to coincide with
the previous result without the other cell interferers. Simulation
results verify the validity of our analysis even with not so large
number of users.

Index Terms—MIMO broadcast channel, random beamform-
ing, multiuser scheduling, other-cell interference.

I. INTRODUCTION

FOR next generation wireless systems, significant research
efforts have been devoted to multiple-input multiple-

output (MIMO) techniques, which can attain substantial ca-
pacity gains [1]–[4]. In order to improve the information
rate, a variety of precoding schemes have been proposed
for multiuser systems including optimal dirty paper coding
(DPC) [5] and simple linear beamforming methods [6]–[8].
However, the actual performance promised by the MIMO
techniques can be severely degraded in a realistic cellular
system. Especially, cell edge users experience poor throughput
performance due to severe signal attenuation and other cell
interference (OCI) coming from neighboring base stations
(BSs). Hence, dealing with the OCI problem has become
one of the most important design issue for future cellular
standards [9]. Another fundamental limit in the real-world
system design is the feedback overhead. In frequency division
duplex systems, channel state information (CSI) should be
quantized to be fed back, which incurs inevitable capacity loss
resulting from quantization error. Currently, numerous related
works addressing limited feedback strategies are in progress
for various system configurations [10].

Random beamforming (RBF) is one of effective techniques
for MIMO downlink channels which takes advantage of its
simple structure and small feedback load [11]. It was shown
in [11] that the RBF achieves the same optimal sum rate
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growth as the DPC. Also in practice, simple RBF approach,
such as per user unitary and rate control (PU2RC), can out-
perform zero-forcing beamforming when the number of users
𝐾 is large [12]. Recently, there have been efforts to better
understand the capacity behavior of the RBF by studying the
asymptotic regime of large 𝐾 [12]–[14]. However, the effect
of the other cell interferers was not taken into account in the
prior works.

In this letter, we analyze the sum rate performance of
the RBF systems in the presence of the OCI. An exact
sum rate is difficult to compute, since the distribution of
the received signal-to-interference-plus-noise ratio (SINR) is
quite complicated to deal with. Thus, employing the theory of
extreme order statistics, we derive an asymptotic closed-form
expression on the ergodic sum rate for a large 𝐾 . From our
analysis, we also find that the sum rate of the RBF scales as
𝑀𝑠 log2 log2𝐾 with arbitrary power level of the OCI signals
when supporting 𝑀𝑠 users at a time. Numerical results show
that our derivation is quite accurate even for a small number
of users.

Throughout this letter, we use the following notations. Nor-
mal letters represent scalar quantities, bold face letters indicate
vectors, and boldface uppercase letters designate matrices. The
superscript (⋅)𝐻 stands for the Hermitian transpose and the
expectation of a random variable is given by 𝔼(⋅).

II. SYSTEM DESCRIPTION

A. System model

Consider a multiuser multiple-input single-output (MISO)
downlink channel where a BS with𝑀 antennas communicates
to 𝐾 single antenna users. Among 𝐾 users, 𝑀𝑠 users (𝑀𝑠 ≤
𝑀 ) are selected via multiuser scheduling in each transmission.
We assume that there exist 𝐿 cochannel interferers for each
user from neighboring cells. First, we define the precoded
signal vector s ∈ ℂ

𝑀×1 as s =
∑𝑀𝑠

𝑗=1 w𝑗𝑢𝑗 where 𝑢𝑗
denotes the complex-valued transmit data symbol given as
𝑢𝑗 = 𝑢𝑗,𝐼 +

√−1𝑢𝑗,𝑄 and w𝑗 ∈ ℂ
𝑀×1 is the beamforming

vector for the symbol 𝑢𝑗 . In the same way, the 𝑙-th OCI
signal vector (𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿) is given by s𝑙 =

∑𝑀𝑠

𝑗=1 w𝑙,𝑗𝑢𝑙,𝑗 .
Throughout this letter, we use the bar notation to represent the
terms related to the OCI. We assume that each BS satisfies the
sum power constraint 𝑃 .

Then, the received signal 𝑦𝑘 of user 𝑘 is written as

𝑦𝑘 =
√
𝑎𝑘h

𝐻
𝑘 s+

𝐿∑
𝑙=1

√
𝑎𝑘,𝑙 h

𝐻

𝑘,𝑙s𝑙 + 𝑛𝑘 (1)

where h𝑘 ∈ ℂ
𝑀×1 and h𝑘,𝑙 ∈ ℂ

𝑀×1 indicate the desired
and the 𝑙-th OCI Rayleigh fading channel vector for user
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𝑘, respectively, whose entries are independent and identically
distributed (i.i.d.) complex Gaussian 𝒞𝒩 (0, 1), 𝑎𝑘 and 𝑎𝑘,𝑙
denote the signal attenuation from the serving BS and the
𝑙-th neighboring BS, respectively, and 𝑛𝑘 stands for the
additive white Gaussian noise (AWGN) with 𝒞𝒩 (0, 1). For
analytical tractability, we consider homogeneous users so that
each user experiences the same attenuations 𝑎𝑘 = 𝑎 from its
serving BS and {𝑎𝑘,1, ⋅ ⋅ ⋅ , 𝑎𝑘,𝐿} = {𝑎1, ⋅ ⋅ ⋅ , 𝑎𝐿}1 from the
neighboring BSs. It is also assumed that the local CSI

√
𝑎h𝑘

and {√𝑎𝑙h𝑘,𝑙}𝐿𝑙=1 is perfectly known at the 𝑘-th user. At every
BS, the uniform power 𝑃

𝑀𝑠
is allocated across the data streams.

B. Review of RBF techniques

The RBF utilizes 𝑀𝑠 orthonormal vectors 𝝓1, ⋅ ⋅ ⋅ ,𝝓𝑀𝑠
∈

ℂ
𝑀×1 so that w𝑚 is set to w𝑚 = 𝝓𝑚 (1 ≤ 𝑚 ≤𝑀𝑠), which

are generated independently at each cell in a pseudo-random
fashion. The beam vectors for the 𝑙-th neighboring cell are
denoted by 𝝓𝑙,𝑚 ∈ ℂ

𝑀×1 for 1 ≤ 𝑚 ≤𝑀𝑠.
At the receiver, all users compute the SINR values for each

of 𝑀𝑠 beams, and feed back the highest SINR along with its
index �̂�. Considering both the intra- and inter-cell interference
signals from our OCI model (1), the SINR values of the 𝑘-th
user for 𝑚 = 1, ⋅ ⋅ ⋅ ,𝑀𝑠 are obtained as

SINR𝑘,𝑚=
𝑎∣h𝐻

𝑘 𝝓𝑚∣2
𝑀𝑠
𝑃

+ 𝑎
∑

𝑗 ∕=𝑚 ∣h𝐻
𝑘 𝝓𝑗 ∣2 +

∑𝐿
𝑙=1 𝑎𝑙

∑
𝑗 ∣h

𝐻
𝑘,𝑙𝝓𝑙,𝑗 ∣2

. (2)

Then, based on the SINR feedback (2) from every user, the
BS performs scheduling by assigning its 𝑚-th data stream to
user 𝑘 who reports the highest SINR such as

𝑘 = arg max
𝑘=1,⋅⋅⋅ ,𝐾

SINR𝑘,𝑚.

Under the above scheduling policy at the BS, the achievable
sum rate 𝑅sum can be written as

𝑅sum ≈
𝑀𝑠∑
𝑚=1

𝔼

[
log2

(
1 + max

𝑘=1,⋅⋅⋅ ,𝐾
SINR𝑘,𝑚

)]

= 𝑀𝑠𝔼

[
max

𝑘=1,⋅⋅⋅ ,𝐾
log2 (1 + SINR𝑘,𝑚)

]
. (3)

Here, the approximation is due to a small probability that the
SINR of a certain user may be the highest for more than one
data stream [11]. However, since this probability is negligible
if 𝐾 is not very small, we can consider (3) as quite an accurate
expression for 𝑅sum.

III. ASYMPTOTIC SUM RATE ANALYSIS

In this section, we develop an asymptotic formula for the
sum rate described in (3). Define Ω𝑘 ≜𝑀𝑠 log2(1+SINR𝑘,𝑚)
and its sample maximum as Ω(𝐾) = max𝑘=1,⋅⋅⋅ ,𝐾 Ω𝑘. Then,
(3) can be simply represented as

𝑅sum = 𝔼[Ω(𝐾)]. (4)

Clearly, our goal is to find the distribution of Ω(𝐾). For this
matter, we first investigate the distribution of SINR𝑘,𝑚.

1Naturally, each element 𝑎𝑘,𝑙 is distinct for different user locations and
thus in general 𝑎1,𝑙 ∕= ⋅ ⋅ ⋅ ∕= 𝑎𝐾,𝑙 for 𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿. Instead, we assume that
the ‘set’ of all attenuation coefficients {𝑎𝑘,1, ⋅ ⋅ ⋅ , 𝑎𝑘,𝐿} is identical for all
users. This can roughly be realizable since the neighboring cells are usually
located in circularly symmetric way.

For convenience, (2) can be rewritten as

SINR𝑘,𝑚 =
𝑎𝑋

𝑀𝑠

𝑃 + 𝑎𝑊 +
∑𝐿

𝑙=1 𝑎𝑙𝑊 𝑙

(5)

where 𝑋 = ∣h𝐻
𝑘 𝝓𝑚∣2, 𝑊 =

∑
𝑗 ∕=𝑚 ∣h𝐻

𝑘 𝝓𝑗 ∣2 and 𝑊 𝑙 =∑𝑀𝑠

𝑗=1 ∣h
𝐻

𝑘,𝑙𝝓𝑙,𝑗 ∣2. Note that 𝑋 = ∣h𝐻
𝑘 𝝓𝑚∣2 is i.i.d. over

both 𝑘 and 𝑚 with 𝜒2(2) distribution since 𝝓1, ⋅ ⋅ ⋅ ,𝝓𝑀𝑠
are

orthonormal [11]. Hence, 𝑊 and 𝑊 𝑙 follow 𝜒2(2𝑀𝑠−2) and
𝜒2(2𝑀𝑠) distribution, respectively.

In (5), we introduce the interference term 𝑉 as 𝑉 ≜
𝑎𝑊 +

∑𝐿
𝑙=1 𝑎𝑙𝑊 𝑙. Since 𝑊 and all 𝑊 𝑙’s are independent,

we find that 𝑉 is a weighted sum of independent Chi-
square random variables, whose probability density function
(PDF) is complicated to compute. Instead of finding the exact
distribution of 𝑉 , we utilize the result in [15] that 𝑉 can be
well approximated by the Gamma distribution

𝑓𝑉 (𝑣;𝛼, 𝛽) ≈ 𝑣𝛼−1 𝑒−
𝑣
𝛽

𝛽𝛼Γ(𝛼)
(6)

where Γ(𝛼) is the gamma function Γ(𝛼) =
∫∞
0
𝑡𝛼−1𝑒−𝑡𝑑𝑡

and the parameters 𝛼 and 𝛽 are given by [15]

𝛼 =

(
(𝑀𝑠 − 1)𝑎+𝑀𝑠

∑𝐿
𝑙=1 𝑎𝑙

)2
(𝑀𝑠 − 1)𝑎2 +𝑀𝑠

∑𝐿
𝑙=1 𝑎

2
𝑙

(7)

𝛽 =
(𝑀𝑠 − 1)𝑎2 +𝑀𝑠

∑𝐿
𝑙=1 𝑎

2
𝑙

(𝑀𝑠 − 1)𝑎+𝑀𝑠

∑𝐿
𝑙=1 𝑎𝑙

. (8)

In Figure 1 (a), we compare the Gamma cumulative dis-
tribution function (CDF) from (6) with the actual CDF of
𝑉 obtained from simulations with 𝑀 = 4. The weight
coefficients 𝑎 and 𝑎1, ⋅ ⋅ ⋅ , 𝑎𝐿 are uniformly generated between
−10 dB and 0 dB and are fixed during the simulation. From
this plot, we confirm that the approximation for 𝑉 is quite
accurate for various configurations.

Now, using the gamma PDF (6), (7) and (8), we can
calculate the approximate PDF of SINR𝑘,𝑚 as

𝑓𝑆(𝑥) =

∫ ∞

0

𝑓𝑋∣𝑉 (𝑥∣𝑣)𝑓𝑉 (𝑣;𝛼, 𝛽)𝑑𝑣

≈
∫ ∞

0

𝑀𝑠

𝑃 + 𝑣

𝑎
𝑒−

(𝑀𝑠
𝑃

+𝑣)𝑥
𝑎 𝑣𝛼−1 𝑒−

𝑣
𝛽

𝛽𝛼Γ(𝛼)
𝑑𝑣

=
𝛽𝑒−

𝑀𝑠𝑥
𝑃𝑎

𝑎

(
𝑀𝑠𝑥

𝑃𝑎
+
𝑀𝑠

𝑃𝛽
+ 𝛼

)(
𝛽𝑥

𝑎
+ 1

)−𝛼−1

(9)

where 𝑓𝑋∣𝑉 is from the 𝜒2(2) distribution of 𝑋 for given 𝑉 .
Also, the corresponding CDF 𝐹𝑆(𝑥) can be computed from
(9) as

𝐹𝑆(𝑥) ≈
∫ 𝑥

0

𝑒−
𝑀𝑠𝑦
𝑃𝑎

(
𝑀𝑠

𝑃𝑎

(
𝛽𝑦

𝑎
+ 1

)
+
𝛼𝛽

𝑎

)(
𝛽𝑦

𝑎
+ 1

)−𝛼−1

𝑑𝑦

= 1− 𝑒−
𝑀𝑠𝑥
𝑃𝑎

(
𝛽𝑥

𝑎
+ 1

)−𝛼

. (10)

Figure 1 (b) shows that the derived CDF in (10) exhibits very
good agreement with empirical results. For example, 𝑀 = 4
case with 𝐿 = 6 interferers was compared in this figure.

Since users are homogeneous, SINR𝑘,𝑚 are i.i.d. over
all 𝑘 = 1, ⋅ ⋅ ⋅ ,𝐾 . Then 𝑅sum in (3) can be expressed as
𝑅sum = 𝑀𝑠

ln 2

∫∞
0

1−𝐹𝐾
𝑆 (𝑥)

1+𝑥 𝑑𝑥. However, this integration is not
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Fig. 1. CDF comparison of 𝑉 and SINR𝑘,𝑚 for 𝑀 = 4 and 𝑀𝑠 = 2 and
4.

solvable with the CDF in (10). Even the high signal-to-noise
ratio (SNR) approach used in [16] cannot be applied except
𝛽
𝑎 = 1 which never occurs in the presence of the OCI.
Consequently, in this work, we attempt to evaluate 𝑅sum in
the asymptotic regime of large 𝐾 . We need the following two
lemmas to identify the asymptotic distribution of SINR(𝐾).

Lemma 1: As𝐾 → ∞,
SINR(𝐾)−𝜇𝑆

𝜎𝑆
converges to a standard

Gumbel random variable whose PDF is exp(−𝑒−𝑥). The
location and scale parameters 𝜇𝑆 and 𝜎𝑆 can be selected as

𝜇𝑆 = 𝐹−1
𝑆

(
1− 1

𝐾

)
(11)

𝜎𝑆 = 𝐹−1
𝑆

(
1− 1

𝐾𝑒

)
− 𝜇𝑆 (12)

where 𝐹−1
𝑆 (𝑥) = inf{𝑦 : 𝑥 ≤ 𝐹𝑆(𝑦)} represents the quantile

function of the distribution of SINR𝑘,𝑚.
Proof: For i.i.d. random variables, the main necessary

condition for attraction to the Gumbel distribution is [17]

lim
𝑥→𝑤(𝐹 )

𝑑

𝑑𝑥

1− 𝐹 (𝑥)
𝑓(𝑥)

= 0 (13)

where 𝑤(𝐹 ) = sup{𝑥 : 𝐹 (𝑥) < 1}. From (9) and (10), it
follows

𝑑

𝑑𝑥

1− 𝐹𝑆(𝑥)

𝑓𝑆(𝑥)
=
𝑑

𝑑𝑥

𝑥+ 𝑎
𝛽

𝑀(𝑥+ 𝑎
𝛽 )

𝑃𝑎 + 𝛼

=
𝑑

𝑑𝑥

𝑃𝑎

𝑀
+𝑂(𝑥−1) = 𝑂(𝑥−2). (14)

Since 𝑤(𝐹 ) = ∞, (14) converges to zero as 𝑥 → 𝑤(𝐹 ) and
Lemma 1 is proved.

Lemma 2: For the parent distribution 𝐹𝑆(𝑥) given in (10),
its quantile function 𝐹−1

𝑆 (𝑦) is obtained by

𝐹−1
𝑆 (𝑦) =

𝑃𝛼𝑎

𝑀𝑠
𝑊

(
𝑀𝑠

𝑃𝛼𝛽
(1− 𝑦)− 1

𝛼 𝑒
𝑀𝑠
𝑃𝛼𝛽

)
− 𝑎

𝛽
(15)

where 𝑊 (⋅) is the Lambert W function [18].
Proof: For simplicity, we introduce 𝑧 = 𝛽𝑥

𝑎 . By substi-
tuting 𝑧 into (10), we have

𝑦 = 1− 𝑒−𝑀𝑠𝑧
𝑃𝛽 (𝑧 + 1)−𝛼 .

Similar to the approach in [19], we can reformulate the
above equation as the form of 𝑣 = 𝑤𝑒𝑤 with 𝑣 =
𝑀𝑠

𝑃𝛼𝛽 𝑒
𝑀𝑠
𝑃𝛼𝛽− 1

𝛼 log(1−𝑦) and 𝑤 = 𝑀𝑠

𝑃𝛼𝛽 (𝑧+1). Then, the variable
𝑥 in (10) is represented by

𝑥 =
𝑎

𝛽
𝑧 =

𝑎

𝛽

(
𝑃𝛼𝛽

𝑀𝑠
𝑤 − 1

)
. (16)

Noting that the solution of 𝑣 = 𝑤𝑒𝑤 is 𝑤 = 𝑊 (𝑣), which is
the definition of the Lambert W function, equation (16) can
be derived as

𝑥 =
𝑃𝛼𝑎

𝑀𝑠
𝑊 (𝑣)− 𝑎

𝛽

=
𝑃𝛼𝑎

𝑀𝑠
𝑊

(
𝑀𝑠

𝑃𝛼𝛽
𝑒

𝑀𝑠
𝑃𝛼𝛽− 1

𝛼 log(1−𝑦)

)
− 𝑎

𝛽
= 𝐹−1

𝑆 (𝑦)

Lemma 1 and 2 show that as𝐾 → ∞, the CDF of SINR(𝐾)

becomes 𝐹𝑆(𝐾)
(𝑥) = exp

(− 𝑒− 𝑥−𝜇𝑆
𝜎𝑆

)
, and its mean 𝜇𝑆 and

variance 𝜎2𝑆 are determined by substituting (15) into (11) and
(12). Now, we need to identify the asymptotic distribution of
Ω(𝐾). We utilize a theorem provided in [20], named as limiting
throughput distribution (LTD) theorem, which characterizes
the limiting behavior of Ω(𝐾) without checking the condition
(13) again for Ω𝑘.

Lemma 3: The distribution of Ω𝑘 belongs to the domain
of the attraction of the Gumbel distribution. The normalizing
constants 𝜇Ω and 𝜎Ω are transformed from (11) and (12) into

𝜇Ω = 𝑀𝑠 log2 (1 + 𝜇𝑆)

𝜎Ω = 𝑀𝑠 log2 (1 + (𝜇𝑆 + 𝜎𝑆))− 𝜇Ω.
Proof: This lemma is a direct consequence of the LTD

theorem [20].

From Lemma 3, it follows that
Ω(𝐾)−𝜇Ω

𝜎Ω
also falls into the

standard Gumbel distribution in the asymptotic regime, which
leads to our main result. Noting that the standard Gumbel
distribution has the mean 𝛾0 = 0.5772 ⋅ ⋅ ⋅ (Euler’s constant),
we have 𝔼

[Ω(𝐾)−𝜇Ω

𝜎Ω

]
= 𝛾0. Then, from (4), we finally arrive

at an expression on the asymptotic ergodic sum rate 𝑅sum as

lim
𝐾→∞

𝑅sum = 𝜇Ω + 𝛾0𝜎Ω (17)

where 𝜇Ω and 𝜎Ω are given from Lemma 3 by

𝜇Ω=𝑀𝑠 log2

(
𝑃𝛼𝑎

𝑀𝑠
𝑊

(
𝑀𝑠𝐾

1
𝛼

𝑃𝛼𝛽
𝑒

𝑀𝑠
𝑃𝛼𝛽

)
+
𝛽−𝑎
𝛽

)
(18)

𝜎Ω=𝑀𝑠 log2

(
𝑃𝛼𝑎

𝑀𝑠
𝑊

(
𝑀𝑠(𝐾𝑒)

1
𝛼

𝑃𝛼𝛽
𝑒

𝑀𝑠
𝑃𝛼𝛽

)
+
𝛽−𝑎
𝛽

)
−𝜇Ω.(19)

For the convergence proof of 𝔼[Ω(𝐾)], one may refer to [20,
Lemma 2].

If we set 𝛼 = 𝑀𝑠 − 1 and 𝛽 = 𝑎, the rate expression
(17) reduces to the special case of no inter-cell interference,
i.e., 𝑎1 = ⋅ ⋅ ⋅ = 𝑎𝐿 = 0, from the relation of (7) and (8).
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Although our analysis (17) holds in the asymptotic regime of
𝐾 → ∞, we will show in the next section that (17) is quite
accurate even for the small number of users. We also note
that for computing the Lambert W function, a couple of simple
Newton’s iterations are sufficient [18]. Nevertheless,𝑊 (⋅) can
be further simplified using an approximation in [19] as

𝑊 (𝑥) ≈ 𝑐1 log2(𝑥+ 𝑐2) + 𝑐3 (20)

where 𝑐1, 𝑐2 and 𝑐3 are fixed coefficients. This approximation
is tight for 𝑥 > 0, which is always met in our case. Using
a usual curve-fitting method, the constants can be determined
as 𝑐1 = 0.4264, 𝑐2 = 0.6683 and 𝑐3 = 0.2547.

By applying the approximation (20) to our result, 𝜇Ω and
𝜎Ω can be expressed by simple log functions and therefore
𝑅sum in (17) can be evaluated as a closed-form approximation.
The final expression is not written again to avoid repetition.
We find that our asymptotic expression is simpler than the
previous analysis with finite 𝐾 [13][21], and is relatively
accurate compared to other bound approaches [14][19]. Now,
we address the following observation.

Theorem 1: For fixed 𝑀𝑠 and 𝑃 , the sum rate (17) obeys
the asymptotic growth rate as

lim
𝐾→∞

𝑅sum

𝑀𝑠 log2 log2𝐾
= 1. (21)

Proof: Due to space limitation, we choose a simple and
intuitive proof rather than a rigorous one. By inserting (20)
into (18) and neglecting 𝑐2 since 𝑐2 ≪ 𝐾 , the limiting value
of 𝜇Ω when 𝐾 → ∞ is given by

lim
𝐾→∞

𝜇Ω

= lim
𝐾→∞

𝑀𝑠 log2

(
𝑃𝛼𝑎𝑐1
𝑀𝑠

log2

(
𝑀𝑠𝐾

1
𝛼

𝑃𝛼𝛽
𝑒

𝑀𝑠
𝑃𝛼𝛽

)
+𝑂(1)

)

= lim
𝐾→∞

𝑀𝑠 log2

(
𝑃𝑎𝑐1
𝑀𝑠

log2𝐾 +𝑂(1)

)
(22)

= 𝑀𝑠 log2 log2𝐾. (23)

Next, from (22), the scale parameter 𝜎Ω can be shown to
vanish as 𝐾 → ∞ as

lim
𝐾→∞

𝜎Ω = lim
𝐾→∞

𝑀𝑠 log2

(
𝑃𝛼𝑎𝑐1
𝑀𝑠

(log2 𝐾 + log2 𝑒) +𝑂(1)
𝑃𝛼𝑎𝑐1
𝑀𝑠

log2 𝐾 +𝑂(1)

)

= 0. (24)

By putting (23) and (24) together into (17), we have (21).

Theorem 1 proves that 𝑅sum scales as 𝑀𝑠 log2 log2𝐾 over
Rayleigh fading channels which is the optimal growth rate of
ideal MISO broadcast channels with no inter-cell interference.
One main assumption underlying the SINR expression in (2)
is that the OCI signals are simply treated as noise. Therefore,
we can see that in a purely distributed manner, the RBF
technique fully exploits a multiuser diversity gain in the
asymptotic regime of large 𝐾 with any finite OCI signal
powers 𝑎𝑘,1, ⋅ ⋅ ⋅ , 𝑎𝑘,𝐿.

IV. SIMULATION RESULTS

In this section, we compare our sum rate analysis for
MISO downlink RBF systems with numerical simulations
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Fig. 2. Average sum rate of the RBF scheme for 𝑀 = 𝑀𝑠 = 4 and 𝑃 = 10
dB.
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Fig. 3. Average sum rate of the RBF scheme for 𝑀 = 𝑀𝑠 = 4 with
𝐾 = 30.

to confirm the validity of our analysis. For simulations, we
use spatially uncorrelated Rayleigh fading channels which are
randomly and independently generated for each transmission.
As explained before, each user feeds back the maximum
SINR value and ⌈log2𝑀𝑠⌉ bits for its index. As for the
attenuation parameters, 𝑎 is set to 0 dB and {𝑎1, ⋅ ⋅ ⋅ , 𝑎𝐿}
are uniformly generated between −10 dB and 0 dB and fixed
during the simulation. This setting roughly reflects the cell
edge environment with strong OCI signals such that the users’
signal-to-interference ratio might be considerably lower than
0 dB [9].

Figure 2 exhibits the average sum rate of the RBF with
respect to 𝐾 for 𝑀 = 𝑀𝑠 = 4 and 𝑃 = 10 dB. Both
the simulations and the analytical results based on (17) are
plotted together in a wide range of 𝐾 ∈ [1, 100]. The Lambert
W function in (18) and (19) is calculated by (20). From this
comparison, we emphasize that our analysis is consistent with
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the empirical curves for various 𝐿 and 𝐾 , even with a small
number of 𝐾 . When 𝐾 is very small, less than 10, we observe
a slight discrepancy between our formula and the simulations.
This is originated by the fact that when we define the sum
rate in (3), we have ignored a small possibility that one user
is scheduled for multiple data streams.

In Figure 3, we present the sum rates for 𝑀 = 𝑀𝑠 = 4
and 𝐾 = 30 users with respect to 𝑃 . We can see from this
figure that our derived result (17) matches quite well with the
actual sum rate performance over the whole range of SNRs for
𝐿 = 1, 2, 3 and 6. From the two figures, we notice that the OCI
causes a significant detrimental effect on the performance of
RBF systems. This issue provides motivation for future studies
of improved interference control strategies over the RBF based
MIMO systems, which may include items such as joint inter-
cell coordination schemes [22][23].

V. CONCLUSIONS

In this letter, we have analyzed the sum rate of the RBF
technique for MISO downlink channels in the presence of
the OCI. We have derived an expression of the ergodic sum
rate when the number of users is asymptotically large. From
numerical simulations, we have confirmed that our asymptotic
analysis is valid for even small 𝐾 . Also, our analysis reveals
the sum rate scaling law𝑀𝑠 log2 log2𝐾 which generally holds
regardless of the OCI strength.
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