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Abstract—In 𝐾-user multiple-input multiple-output (MIMO)
interference channels, it was shown that interference alignment
(IA) achieves a full spatial multiplexing gain when perfect
channel state information (CSI) is available at each transmitter
in the network. When the CSI is fed back from receivers using
the limited number of feedback bits, a significant performance
loss is inevitable in the IA due to quantized channel knowledge.
In this paper, we propose a new channel quantization strategy
to optimize the performance of the IA with limited feedback.
In our proposed scheme, we introduce an additional receive
filter to minimize the chordal distance which accounts for the
quantization error on Grassmann manifold. Besides, we analyze
a reduction in terms of the chordal distance in our scheme
compared to conventional methods. Simulation results verify that
the proposed scheme provides substantially better performance
than the conventional method as the number of feedback bits
is increased. We show that our scheme exhibits 30% and 40%
sum rate gains compared to the conventional scheme when the
numbers of the feedback bits are 10 and 15, respectively, with
two antennas per node.

Index Terms—Interference alignment, limited feedback, chan-
nel quantization.

I. INTRODUCTION

THERE have been extensive researches on interference
channels to characterize the capacity in the information

theoretic aspect. Although several notable results have been
obtained for certain cases [1] [2], characterization of the
capacity region of the interference channel is still an open
problem in general [3]. As an alternative means to specify
the system performance, degrees of freedom (DOF) has been
introduced to analyze various channels [3]–[5]. By definition,
the DOF is analogous to the multiplexing gain, and the system
capacity is dominated by the DOF at high signal to noise ratio
(SNR).

Recently, an algorithm named interference alignment (IA)
has demonstrated that the DOF of the interference channel
can be substantially higher than previous wisdom [6] [7]. The
IA is a linear precoding technique which attempts to align
interference signals in the domain of time and frequency.
Especially in multiple-input multiple-output (MIMO) systems,
the spatial dimension provided by multiple antennas can be
exploited for the alignment of the interference. At each re-
ceiver, the desired signals can be decoded without interference,
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since the signals from the other transmitters are precoded to
be aligned using the IA. The authors in [6] have shown that
the IA attains almost surely the maximum DOF of 𝐾/2 per
dimension in the 𝐾-user interference channel. For general
MIMO configurations, the feasibility conditions of the IA and
the achievable DOFs have been studied in [8].

From a practical perspective, the IA can be adopted to
enhance the cell-edge user throughput in a cellular network.
In this case, global channel state information (CSI) should be
obtained at the transmitters via feedback in order to manipulate
the IA [6] [7]. Note that channel reciprocity is valid only
for acquiring the local CSI. Thus, in the IA, time division
duplex (TDD) does not provide savings in terms of the
feedback overhead in comparison to frequency division duplex
(FDD). For the case where the CSI is ideally known at each
transmitter, the IA successfully achieves a theoretical bound
on the DOF for interference channels [9]–[11]. However, the
assumption of the perfect CSI is almost impossible to be
realized at the transmitters, especially for quantized feedback
systems using feedback links with finite bandwidth. Unlike
point-to-point MIMO systems where the imperfect CSI causes
only an SNR offset in the capacity vs. SNR curve, the accuracy
of the CSI in the IA systems affects the slope of the curve, i.e.,
DOF [12]. This phenomenon is analogous to that of multiuser
MIMO broadcast systems [13]–[16].

Consequently, recent studies addressed this issue of the IA
with limited feedback. The paper in [17] examined the effect
of the imperfect CSI with respect to the mutual information
of the IA in a specific system configuration. Besides, the
authors in [18] clarified the required number of feedback bits
to achieve the maximum DOF of the IA for a frequency se-
lective single-input single-output (SISO) system. An extended
work was developed in [12] for the MIMO case, where an
appropriate limited feedback scheme has also been proposed.

However, a large amount of feedback bits is still necessary
to attain reasonable performance. To circumvent the feedback
overhead issues in the IA, analog CSI feedback was considered
with several restrictions in [19]. Instead of the IA, a leakage
based scheme was studied in [20] for limited feedback cellular
networks by assuming a single interference source for each
cell. The papers in [21] [22] addressed the effect of channel
feedback delay in cellular systems, and a scalable limited
feedback design was proposed in [23] [24] for network MIMO
systems.

In this paper, we propose a new channel quantization
method to enhance the performance of MIMO IA systems
with limited feedback. At each receiver, the proposed scheme
introduces an additional receive filter before quantizing the
channels. By judiciously designing the combined receive filter
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which determines the effective channels, the quantization error
can be substantially reduced in our scheme compared to the
conventional one in [12]. The receive filter in the proposed
scheme minimizes the chordal distance which is directly
related to the quantization error on Grassmann manifold [25]
[26]. Then at the transmitters, the IA is manipulated according
to the feedback information of the effective channels.

To quantify a performance gain of the proposed scheme
over the conventional one, we analyze the difference of the
minimum chordal distance between these two methods with
the fixed number of feedback bits. Simulation results show
that our scheme exhibits significantly better performance than
the conventional scheme for the whole SNR region regardless
of the number of the feedback bits. We confirm that about
30% and 40% sum rate gains are obtained by utilizing the
proposed method compared to the conventional scheme when
the numbers of the feedback bits are 10 and 15, respectively,
with two antennas per node at high SNR.

In multiuser MIMO systems, there also exist several meth-
ods adjusting the receive filters to improve the performance
of systems with limited feedback [13]–[16]. However, these
methods do not consider the interference channels when
deriving the filters unlike our proposed scheme. Besides, the
method in [16] assumes only one data stream per user by
imposing the antenna combining vectors at the receivers,
whereas the proposed scheme allows multiple data streams
at each transmitter-receiver pair by properly designing the
receive filter matrices.

The following notations are used for description throughout
this paper. Normal letters represent scalar quantities, boldface
letters indicate vectors and boldface uppercase letters desig-
nate matrices. Also, (⋅)∗, (⋅)† and 𝔼[⋅] stand for conjugate,
conjugate transpose and expectation, respectively. In addition,
ℝ𝑚×𝑛 and ℂ𝑚×𝑛 denote 𝑚 × 𝑛 real and complex matrix
spaces, respectively. An identity matrix with size 𝑚 × 𝑚 is
represented as I𝑚, and ⊗ indicates Kronecker product.

The organization of the paper is as follows: Section II
presents an interference channel model, and briefly reviews the
concept of the IA. In Section III, we introduce our new channel
quantization algorithm. Section IV analyzes the difference
of the minimum chordal distance between the conventional
and the proposed scheme, and we compare the sum rate
performance of our scheme with the conventional method in
various system configurations in Section V. Finally, the paper
is terminated with conclusions in Section VI.

II. SYSTEM DESCRIPTIONS AND BACKGROUND

Figure 1 illustrates 𝐾-user MIMO interference channels
where each transmitter 𝑖 communicates with its corresponding
receiver 𝑖 and interferes with all other receivers 𝑗 ∕= 𝑖.
In this system, transmitter 𝑖 is equipped with 𝑁𝑡 transmit
antennas to support 𝑑𝑖 data streams, and receiver 𝑖 has 𝑁𝑟

receive antennas for all 𝑖 (𝑑𝑖 ≤ min(𝑁𝑡, 𝑁𝑟)). Although we
consider the same numbers of antennas for every transmitter-
receiver pair, the results can be generalized to a network
with different numbers of antennas as long as the IA remains
feasible [8]. In the discrete-time complex baseband MIMO
case, the frequency-flat channel from transmitter 𝑖 to receiver 𝑗
is modeled by the matrix H𝑗,𝑖 =

[
h
(1)
𝑗,𝑖 ⋅ ⋅ ⋅ h

(𝑁𝑡)
𝑗,𝑖

]
∈ ℂ𝑁𝑟×𝑁𝑡

Fig. 1. Block diagram of K user MIMO interference channel systems.

where h
(𝑙)
𝑗,𝑖 ∈ ℂ𝑁𝑟×1 represents the 𝑙-th column vector for

𝑖, 𝑗 = 1, ⋅ ⋅ ⋅ ,𝐾 . The entries of H𝑗,𝑖 are assumed as inde-
pendently and identically distributed (i.i.d.) complex Gaussian
random variables with zero mean and unit variance 𝒞𝒩 (0, 1).

At the 𝑖-th receiver, the received signal vector y𝑖 ∈ ℂ𝑁𝑟×1

is given as

y𝑖 = H𝑖,𝑖T𝑖x𝑖 +

𝐾∑
𝑗=1,𝑗 ∕=𝑖

H𝑖,𝑗T𝑗x𝑗 + n𝑖 (1)

where T𝑖 ∈ ℂ𝑁𝑡×𝑑𝑖 indicates the transmit precoder at trans-
mitter 𝑖 with unit-norm columns, x𝑖 ∈ ℂ

𝑑𝑖×1 denotes the
transmit symbol vector from transmitter 𝑖, and n𝑖 ∈ ℂ𝑁𝑟×1 is
the additive white Gaussian noise vector observed at receiver
𝑖. Here the symbols in x𝑖 are assumed to be independently
generated with unit variance and the entries of n𝑖 are i.i.d.
with zero mean and variance 𝑁0. Defining R𝑖 ∈ ℂ𝑁𝑟×𝑑𝑖 as
the receive combining matrix for the 𝑖-th receiver, the received
signal vector x̂𝑖 after the receiver combining is expressed as

x̂𝑖 = R†
𝑖y𝑖 = R†

𝑖H𝑖,𝑖T𝑖x𝑖 +R†
𝑖

𝐾∑
𝑗=1,𝑗 ∕=𝑖

H𝑖,𝑗T𝑗x𝑗 +R†
𝑖n𝑖. (2)

We assume that each receiver 𝑖 knows its MIMO channels
H𝑖,1, ⋅ ⋅ ⋅ ,H𝑖,𝐾 perfectly based on separate pilot signals trans-
mitted by each of 𝐾 transmitters. Also, error-free dedicated
broadcast links are assumed from each receiver to other
transmitters 𝑗 (∀𝑗 ∕= 𝑖) in the network. During the channel
feedback phase, receiver 𝑖 broadcasts its CSI using 𝐵 bits.
This is suitable for the FDD systems, where each transmitter
must rely on the quantized feedback from the receivers to
obtain the CSI. Note that channel reciprocity is useful only
for having its local CSI in the TDD systems.

Under the assumption of the perfect CSI at the transmitters,
one can achieve the maximum multiplexing gain, or the
maximum DOF by utilizing the IA techniques. This implies
that the transmit precoding matrix T𝑖 is chosen in the null
space of R†

𝑗H𝑗,𝑖 such that R†
𝑗H𝑗,𝑖T𝑖 = 0 (∀𝑗 ∕= 𝑖) [8].

Consequently, T𝑖 causes no interference to receiver 𝑗 by
completely removing the interference term in (2). Also, the
total number of the transmitted data streams

∑
𝑑𝑖 is set to

attain a full spatial multiplexing gain, i.e.,
∑

𝑑𝑖 = 𝐾𝑁𝑡/2
is achieved in case of 𝑁𝑡 = 𝑁𝑟 [6]. However, when the
CSI is fed back through the limited feedback channel, it is
difficult to obtain such optimized performance which satisfies
zero interference. That is, a significant loss of performance is
inevitable due to the imperfect CSI. To reduce the interference
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caused by the limited feedback, we propose a new channel
quantization scheme suitable for the limited feedback MIMO
IA in the following section.

III. PROPOSED CHANNEL QUANTIZATION SCHEME

In this section, we describe our proposed channel quantiza-
tion method for limited feedback IA systems. Before starting,
we briefly review the previous work in [12] to study how
each receiver quantizes its respective channels H𝑖,𝑗 (∀𝑗 ∕= 𝑖)
for implementing the MIMO IA. According to [12], the
aggregated channel matrix W𝑖 ∈ ℂ𝑁𝑡𝑁𝑟×(𝐾−1) fed back from
the 𝑖-th receiver is expressed as

W𝑖 =
[
h̃𝑖,1 ⋅ ⋅ ⋅ h̃𝑖,𝑖−1 h̃𝑖,𝑖+1 ⋅ ⋅ ⋅ h̃𝑖,𝐾

]
(3)

where a unit-norm vector h̃𝑖,𝑗 ∈ ℂ𝑁𝑡𝑁𝑟×1 is obtained by
stacking the columns of H𝑖,𝑗 as

h̃𝑖,𝑗 =

[
h
(1)†
𝑖,𝑗 ⋅ ⋅ ⋅h(𝑁𝑡)†

𝑖,𝑗

]†∥∥[h(1)†
𝑖,𝑗 ⋅ ⋅ ⋅h(𝑁𝑡)†

𝑖,𝑗

]∥∥ . (4)

Note that the vector h̃𝑖,𝑖 corresponding to H𝑖,𝑖 is excluded
in (3), because it is not mandatory for the transmitters to
manipulate the IA [6]–[8]. Also, we do not consider symbol
extension in time slots or frequency slots, since alignment
in spatial dimension is found to be more robust to practical
limitations than in time or frequency dimension [8] [27] [28].

Using the concept of the composite Grassmann manifold
[12], the matrix W𝑖 = [w

(1)
𝑖 ⋅ ⋅ ⋅ w

(𝐾−1)
𝑖 ] can be quantized

with a codebook 𝒞 = {C1, ⋅ ⋅ ⋅ ,C2𝐵} where each codeword
C𝑗 = [c

(1)
𝑗 ⋅ ⋅ ⋅ c(𝐾−1)

𝑗 ] ∈ ℂ𝑁𝑡𝑁𝑟×(𝐾−1) with ∥c(𝑚)
𝑗 ∥ = 1 for

∀𝑗,𝑚 has the same size of W𝑖. Specifically, we can present
the chordal distance between these two matrices as

𝒟(W𝑖,C𝑗) =

𝐾−1∑
𝑙=1

(
1− ∣∣w(𝑙)†

𝑖 c
(𝑙)
𝑗

∣∣2) (5)

which is commonly used for a distance metric on the com-
posite Grassmann manifold [12].

Then, receiver 𝑖 computes the chordal distance from W𝑖 to
each codeword in 𝒞, and feeds back the index of the codeword
which shows the minimum chordal distance. This is because
the chordal distance accounts for the quantization error on the
Grassmann manifold. Based on these indices fed back from all
receivers, each transmitter can obtain the CSI for H𝑖,𝑗 (𝑖, 𝑗 =
1, ⋅ ⋅ ⋅ ,𝐾, 𝑖 ∕= 𝑗) from the corresponding codewords and the
IA becomes feasible. However, unless the feedback bit 𝐵 is
large enough, the performance of the IA may be significantly
degraded due to the imperfect CSI. To minimize a performance
loss caused by the quantized feedback, we propose our scheme
in the following.

First, in our method, we introduce an additional receive
filter G𝑖 ∈ ℂ𝑁𝑟×𝑁𝑟 at the 𝑖-th receiver before quantizing
the channels. We assume that G𝑖 is a unitary matrix so that
the noise remains uncorrelated, i.e., 𝔼[G𝑖n𝑖n

†
𝑖G

†
𝑖 ] = 𝑁0I𝑁𝑟 .

Denoting H𝑖,𝑗 =
[
h
(1)

𝑖,𝑗 ⋅ ⋅ ⋅h(𝑁𝑡)

𝑖,𝑗

]
= G𝑖H𝑖,𝑗 (𝑗 = 1, ⋅ ⋅ ⋅ ,𝐾)

as the effective channels, we can feed back H𝑖,𝑗 as the actual

channel matrix instead of H𝑖,𝑗 . That is, by considering h
(𝑚)

𝑖,𝑗 as

h
(𝑚)
𝑖,𝑗 in (4) for all 𝑚, each column of the aggregated channel

matrix W𝑖 =
[
h𝑖,1 ⋅ ⋅ ⋅h𝑖,𝑖−1 h𝑖,𝑖+1 ⋅ ⋅ ⋅h𝑖,𝐾

]
in (3) for the

CSI quantization of our scheme is presented as

h𝑖,𝑗 =
(I𝑁𝑡 ⊗G𝑖)

[
h
(1)†
𝑖,𝑗 ⋅ ⋅ ⋅h(𝑁𝑡)†

𝑖,𝑗

]†∥∥(I𝑁𝑡 ⊗G𝑖)
[
h
(1)†
𝑖,𝑗 ⋅ ⋅ ⋅h(𝑁𝑡)†

𝑖,𝑗

]∥∥
=

(I𝑁𝑡 ⊗G𝑖)h̃𝑖,𝑗∥∥(I𝑁𝑡 ⊗G𝑖)h̃𝑖,𝑗

∥∥ = (I𝑁𝑡 ⊗G𝑖)h̃𝑖,𝑗 (6)

where the last equality holds since
∥∥(I𝑁𝑡 ⊗ G𝑖)h̃𝑖,𝑗

∥∥ = 1

with the unitary matrix G𝑖 and the unit-norm vector h̃𝑖,𝑗 .
By judiciously designing G𝑖 in (6) which determines W𝑖,
the minimum chordal distance for the given codebook 𝒞
becomes smaller than that from quantizing the original W𝑖.
Consequently, an overall performance degradation incurred
by the imperfect CSI is mitigated without increasing the
codebook size in our method. Note that our filter G𝑖 optimizes
the quantization on the composite Grassmann manifold unlike
the filters used in point-to-point MIMO systems.

Now we describe how to compute the filter G𝑖 at the 𝑖-
th receiver to reduce the minimum chordal distance in detail.
Using the relation in (6), the chordal distance between W𝑖

and a given arbitrary codeword C𝑚 ∈ 𝒞 is developed as

𝒟(W𝑖,C𝑚) =

𝐾−1∑
𝑙=1

(
1− ∣∣c(𝑙)†𝑚 (I𝑁𝑡 ⊗G𝑖)w

(𝑙)
𝑖

∣∣2)
=

𝐾−1∑
𝑙=1

(
1− ∣∣tr((I𝑁𝑡 ⊗G𝑖)w

(𝑙)
𝑖 c(𝑙)†𝑚

)∣∣2) (7)

=

𝐾−1∑
𝑙=1

(
1− tr

(
𝑒−𝑗𝜃𝑙(I𝑁𝑡 ⊗G𝑖)w

(𝑙)
𝑖 c(𝑙)†𝑚

)2)
≥𝐾 − 1− tr

(
(I𝑁𝑡 ⊗G𝑖)

𝐾−1∑
𝑙=1

𝑒−𝑗𝜃𝑙w
(𝑙)
𝑖 c(𝑙)†𝑚

)2

=𝐾 − 1− tr(G𝑖A)2 (8)

where we have A ≜
∑𝐾−1

𝑙=1

∑𝑁𝑡

𝑛=1 𝑒
−𝑗𝜃𝑙w̄

(𝑙)
𝑖,𝑛c̄

(𝑙)†
𝑚,𝑛, 𝑗 =

√−1,

𝜃𝑙 indicates the phase of c
(𝑙)†
𝑚 (I𝑁𝑡 ⊗ G𝑖)w

(𝑙)
𝑖 , and w̄

(𝑙)
𝑖,𝑛 ∈

ℂ𝑁𝑟×1 and c̄
(𝑙)
𝑚,𝑛 ∈ ℂ𝑁𝑟×1 denote the 𝑛-th block of w(𝑙)

𝑖 and
c
(𝑙)
𝑚 , respectively

(
i.e., w(𝑙)

𝑖 =
[
w̄

(𝑙)†
𝑖,1 ⋅ ⋅ ⋅ w̄(𝑙)†

𝑖,𝑁𝑡

]†
and c

(𝑙)
𝑚 =[

c̄
(𝑙)†
𝑚,1 ⋅ ⋅ ⋅ c̄(𝑙)†𝑚,𝑁𝑡

]†)
. To reduce the chordal distance in (7), the

lower bound in (8) is minimized by considering the following
lemma.

Lemma 1: Consider the singular value decomposition
(SVD) of an 𝑚 × 𝑚 matrix Q as Q = UΣV† where U ∈
ℂ𝑚×𝑚 and V ∈ ℂ𝑚×𝑚 represent unitary matrices composed
of the left and right singular vectors of Q, respectively, and
Σ ∈ ℂ𝑚×𝑚 equals a diagonal matrix with the corresponding
singular values. For a unitary matrix P, the real part of tr

(
PQ

)
is maximized by setting P = VU†.

Proof: Without loss of generality, a unitary matrix P
can be expressed as P = VLU† with a unitary matrix
L = V†PU of size 𝑚 × 𝑚. Then, tr

(
PQ

)
= tr

(
LΣ
)
=

𝑙1𝜎1 + ⋅ ⋅ ⋅+ 𝑙𝑚𝜎𝑚 where 𝑙𝑛 and 𝜎𝑛 denote the 𝑛-th diagonal
entry of L and Σ, respectively. Since 𝜎𝑛 ≥ 0 for all 𝑛, L
which maximizes the real part of tr

(
PQ

)
is equal to I𝑚.

After applying the SVD to A = UΣV† in (8), G𝑖 is
set to G𝑖 = VU† following Lemma 1. Then, the phases
𝜃1, ⋅ ⋅ ⋅ , 𝜃𝐾−1 which determine A in (8) need to be computed
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after obtaining G𝑖. Therefore, we exploit an iterative process
to update G𝑖 and 𝜃𝑙 (𝑙 = 1, ⋅ ⋅ ⋅ ,𝐾 − 1) one after another. In
this process, we first initialize G𝑖 = I𝑁𝑟 . Then 𝜃1, ⋅ ⋅ ⋅ , 𝜃𝐾−1

are calculated with the assumption that G𝑖 is fixed and vice
versa, until convergence is reached. Our proposed scheme is
summarized as below.

Algorithm 1 Proposed process for computing G𝑖

1) Initialize G𝑖 = I𝑁𝑟

2) Set 𝜃𝑙 to the phase of c(𝑙)†𝑚 (I𝑁𝑡 ⊗G𝑖)w
(𝑙)
𝑖 for all 𝑙

3) Apply SVD to
𝐾−1∑
𝑙=1

𝑁𝑡∑
𝑛=1

𝑒−𝑗𝜃𝑙w̄
(𝑙)
𝑖,𝑛c̄

(𝑙)†
𝑚,𝑛 = UΣV†

4) G𝑖 = VU†

5) Go back to 2) until convergence

Note that the performance of our scheme becomes identical
to that of the conventional method when the filter G𝑖 is fixed
to G𝑖 = I𝑁𝑟 . By computing G𝑖 which minimizes (8) in
our method, we can reduce the chordal distance between W𝑖

and the given codeword C𝑚. The reduced chordal distance
𝒟(W𝑖,C𝑚) is computed in (7) after obtaining G𝑖 through the
proposed method. Now the chordal distance from W𝑖 to each
codeword in 𝒞 can be derived by utilizing the above process.
Finally, the index of the codeword and the corresponding G𝑖

are identified which minimize the chordal distance in our
method.

The transmit precoding matrix T𝑖 and the receive combin-
ing matrix R𝑖 in (2) are computed based on the newly obtained
effective channels H𝑖,𝑗 . At the 𝑖-th transmitter, the quantized
feedback information corresponding to H𝑖,𝑗 is utilized to yield
a solution for T𝑖. In contrast, at receiver 𝑖, the filter R𝑖 is
derived by using the actual (unquantized) values of H𝑖,𝑗 since
G𝑖 and H𝑖,𝑗 are both known exactly at the receiver. In the next
section, we compare the minimum chordal distance between
our proposed scheme and the conventional method through
mathematical derivations.

IV. MINIMUM CHORDAL DISTANCE ANALYSIS

The performance of limited feedback systems depends on
the minimum chordal distance which characterizes the rate-
distortion tradeoff in the quantization on the Grassmann man-
ifold [25] [26]. First, we will investigate the difference of the
minimum chordal distance between the conventional and the
proposed scheme when the codebook 𝒞 is generated through
random vector quantization (RVQ) with the feedback bits 𝐵.
This analysis will quantify a reduction of the CSI quantization
error in our scheme compared to the conventional one. Using
this analysis, we will compare the numbers of required bits
for both schemes later.

A. Difference of Minimum Chordal Distance

First, we apply the following assumption in quantizing the
aggregated channel W𝑖 for simple analysis. Note that the
aggregated channel for the conventional method in (3) is
quantized on the domain of the (𝐾 − 1)-composite Grass-
mann manifold using 𝐵 bits [12]. Considering this fact, we
assume that each Grassmann manifold is quantized by utilizing

𝑈 = 𝐵/(𝐾 − 1) bits in our analysis. This assumption is
asymptotically true as 𝐵 increases, and the total number of
the required bits to quantize W𝑖 is invariant. Under this
assumption, the 𝑙-th column w

(𝑙)
𝑖 in W𝑖 is quantized to one of

unit norm codewords c̃(𝑙)𝑗 ∈ ℂ𝑁𝑡𝑁𝑟×1 in 𝒞𝑙 = {c̃(𝑙)1 , ⋅ ⋅ ⋅ , c̃(𝑙)
2𝑈

}
based on the minimum chordal distance criterion.

Likewise, we apply the same assumption to quantize W𝑖 =[
w

(1)
𝑖 ⋅ ⋅ ⋅w(𝐾−1)

𝑖

]
in our scheme, and the difference of the

minimum chordal distance between the conventional and the
proposed scheme can be computed with given 𝐵 as

Δ𝒟=

𝐾−1∑
𝑙=1

min
𝑗=1,⋅⋅⋅ ,2𝑈

(
1−∣∣w(𝑙)†

𝑖 c̃
(𝑙)
𝑗

∣∣2)−𝐾−1∑
𝑙=1

min
𝑗=1,⋅⋅⋅ ,2𝑈

(
1−∣∣w(𝑙)†

𝑖 c̃
(𝑙)
𝑗

∣∣2) (9)

=
𝐾−1∑
𝑙=1

max
𝑗=1,⋅⋅⋅ ,2𝑈

∣∣w(𝑙)†
𝑖 c̃

(𝑙)
𝑗

∣∣2−𝐾−1∑
𝑙=1

max
𝑗=1,⋅⋅⋅ ,2𝑈

∣∣w(𝑙)†
𝑖 c̃

(𝑙)
𝑗

∣∣2. (10)

Now, we will prove that the expectation of Δ𝒟 in (10)
is greater than 0 for all 𝐵, i.e., 𝔼[Δ𝒟] > 0. This result
will demonstrate that our proposed scheme exhibits smaller
quantization errors than the conventional method regardless
of the codebook size.

Let us consider the distribution of 𝛼 ≜
∣∣w(𝑙)†

𝑖 c̃
(𝑙)
𝑗

∣∣2 and

𝛽 ≜
∣∣w(𝑙)†

𝑖 c̃
(𝑙)
𝑗

∣∣2. The cumulative density function (CDF) of 𝛼
in (10) with two independent and uniformly distributed vectors
w

(𝑙)
𝑖 and c̃

(𝑙)
𝑗 is obtained as [29]

𝐹𝛼(𝑥) = 1− (1− 𝑥)𝑁𝑡𝑁𝑟−1 for 0 ≤ 𝑥 ≤ 1. (11)

To derive the distribution of 𝛽 in (10), we first clarify the
relation between w

(𝑙)
𝑖 and c̃

(𝑙)
𝑗 . In our scheme, w(𝑙)

𝑖 = (I𝑁𝑡 ⊗
G𝑖)w

(𝑙)
𝑖 is designed to maximize 𝛽, which in turn minimizes

the chordal distance. Although the optimal 𝛽 is achieved when
w

(𝑙)
𝑖 = c̃

(𝑙)
𝑗 , it is impossible to attain in general due to the

finite size of the unitary matrix G𝑖 ∈ ℂ𝑁𝑟×𝑁𝑟 . Since it is
difficult to derive an exact distribution of 𝛽 because of joint
relations among each process in our method, we approximate
it by considering the following two cases regarding the size
of G𝑖.

As one special case, suppose that G𝑖 reduces to a scalar 𝑔𝑖
with unit amplitude, and the corresponding w

(𝑙)
𝑖 is defined as

w
(𝑙)
𝑖 = (I𝑁𝑡𝑁𝑟 ⊗ G𝑖)w

(𝑙)
𝑖 = 𝑔𝑖w

(𝑙)
𝑖 . In this case, the distri-

bution of 𝛽 =
∣∣𝑔∗𝑖w(𝑙)†

𝑖 c̃
(𝑙)
𝑗

∣∣2 =
∣∣w(𝑙)†

𝑖 c̃
(𝑙)
𝑗

∣∣2 is determined by
[29]

𝛽 ∼
𝛾1

𝛾1 + 𝛾2
(12)

where ∼ represents equivalence in distribution, and 𝛾1 and 𝛾2
indicate two independent Chi-square random variables with
2 and 2(𝑁𝑡𝑁𝑟 − 1) degrees of freedom, respectively (i.e.,
𝛾1 ∼ 𝜒2

2 and 𝛾2 ∼ 𝜒2
2(𝑁𝑡𝑁𝑟−1)).

Then, as the second special case, suppose that the size of
the unitary matrix G𝑖 is as large as 𝑁𝑡𝑁𝑟 × 𝑁𝑡𝑁𝑟 and the
corresponding w

(𝑙)
𝑖 is presented as w

(𝑙)
𝑖 = (I1 ⊗G𝑖)w

(𝑙)
𝑖 =

G𝑖w
(𝑙)
𝑖 . Obviously, there always exists G𝑖 which maximizes

𝛽 =
∣∣c̃(𝑙)†𝑗 G𝑖w

(𝑙)
𝑖

∣∣2 = 1 in this case, and the distribution of 𝛽
follows (12) with the degrees of freedoms 2𝑁𝑡𝑁𝑟 and 0 for
𝛾1 and 𝛾2, respectively (i.e., 𝛾1 ∼ 𝜒2

2𝑁𝑡𝑁𝑟
and 𝛾2 ∼ 𝜒2

0).
Now, observing the distribution of these two special cases,

we approximate the distribution of 𝛽 for practical cases
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where G𝑖 has the size of 𝑚 × 𝑚 (1 < 𝑚 < 𝑁𝑡𝑁𝑟) by
applying linear interpolation to the degrees of freedoms on
𝛾1 ∼ 𝜒2

2𝑚 and 𝛾2 ∼ 𝜒2
2(𝑁𝑡𝑁𝑟−𝑚) in (12). Since the probability

density function (PDF) of a Chi-square random variable with
𝑛 degrees of freedom is expressed as

𝑓𝜒2
𝑛
(𝑥) =

𝑥
𝑛−2
2 𝑒−𝑥

Γ
(
𝑛
2

) , (13)

we can derive the PDF of 𝛽 by utilizing (12) and (13) with
𝑚 = 𝑁𝑟 as

𝑓𝛽(𝑥) =

∫ ∞

0

𝑓𝛽(𝑥∣𝛾2)𝑓𝛾2(𝜔)𝑑𝜔

=

∫ ∞

0

𝜔

(1 − 𝑥)2
𝑓𝛾1

( 𝑥𝜔

1− 𝑥

)
𝑓𝛾2(𝜔)𝑑𝜔 (14)

=
𝑥𝑁𝑟−1

Γ(𝑁𝑟)Γ(𝑁𝑡𝑁𝑟 −𝑁𝑟)(1− 𝑥)𝑁𝑟+1

×
∫ ∞

0

exp
(
− 𝜔

1− 𝑥

)
𝜔𝑁𝑡𝑁𝑟−1𝑑𝜔

=
𝑥𝑁𝑟−1(1− 𝑥)𝑁𝑡𝑁𝑟−𝑁𝑟−1

Ψ(𝑁𝑟, 𝑁𝑡𝑁𝑟 −𝑁𝑟)
for 0 ≤ 𝑥 ≤ 1 (15)

where Γ(⋅) and Ψ(⋅, ⋅) denote the gamma and the beta func-
tion, respectively [30]. Here the second equality in (14) is
derived using the fact 𝐹𝛽(𝑥∣𝛾2) = 𝐹𝛾1

( 𝑥𝛾2
1− 𝑥

)
obtained from

(12). Then the CDF of 𝛽 in (10) is obtained from the PDF in
(15) as [30]

𝐹𝛽(𝑥) = 𝐼𝑥(𝑁𝑟, 𝑁𝑡𝑁𝑟 −𝑁𝑟)

=

𝑁𝑡𝑁𝑟−1∑
𝑝=𝑁𝑟

(
𝑁𝑡𝑁𝑟 − 1

𝑝

)
𝑥𝑝(1− 𝑥)𝑁𝑡𝑁𝑟−1−𝑝 (16)

where 𝐼𝑥(⋅, ⋅) indicates the regularized incomplete beta func-
tion.

Now using the above CDFs the expectation of Δ𝒟 in (10)
is given as

𝔼[Δ𝒟] = (𝐾 − 1)

(
𝔼

[
max

𝑗=1,⋅⋅⋅ ,2𝑈
∣∣w(𝑙)†

𝑖 c̃
(𝑙)
𝑗

∣∣2]
− 𝔼

[
max

𝑗=1,⋅⋅⋅ ,2𝑈
∣∣w(𝑙)†

𝑖 c̃
(𝑙)
𝑗

∣∣2]) (17)

=(𝐾 − 1)2𝑈
(∫ 1

0

𝑥
(
𝐹𝛽(𝑥)

)2𝑈−1
𝑓𝛽(𝑥)𝑑𝑥

−
∫ 1

0

𝑥
(
𝐹𝛼(𝑥)

)2𝑈−1
𝑓𝛼(𝑥)𝑑𝑥

)
=(𝐾 − 1)

(∫ 1

0

((
𝐹𝛼(𝑥)

)2𝑈−(𝐹𝛽(𝑥)
)2𝑈)

𝑑𝑥

)
. (18)

By utilizing (11) and (16), we have

𝐹𝛼(𝑥)−𝐹𝛽(𝑥) = 1− (1− 𝑥)𝑁𝑡𝑁𝑟−1

−
𝑁𝑡𝑁𝑟−1∑
𝑝=𝑁𝑟

(
𝑁𝑡𝑁𝑟 − 1

𝑝

)
𝑥𝑝(1−𝑥)𝑁𝑡𝑁𝑟−1−𝑝 (19)

=
(
𝑥+ (1− 𝑥)

)𝑁𝑡𝑁𝑟−1 − (1− 𝑥)𝑁𝑡𝑁𝑟−1

−
𝑁𝑡𝑁𝑟−1∑
𝑝=𝑁𝑟

(
𝑁𝑡𝑁𝑟 − 1

𝑝

)
𝑥𝑝(1− 𝑥)𝑁𝑡𝑁𝑟−1−𝑝

=

𝑁𝑟−1∑
𝑝=0

(
𝑁𝑡𝑁𝑟 − 1

𝑝

)
𝑥𝑝(1− 𝑥)𝑁𝑡𝑁𝑟−1−𝑝

−(1− 𝑥)𝑁𝑡𝑁𝑟−1

=

𝑁𝑟−1∑
𝑝=1

(
𝑁𝑡𝑁𝑟 − 1

𝑝

)
𝑥𝑝(1− 𝑥)𝑁𝑡𝑁𝑟−1−𝑝.

Thus, we can see that 𝐹𝛼(𝑥)−𝐹𝛽(𝑥) > 0 for all 0 < 𝑥 < 1,

which leads to
(
𝐹𝛼(𝑥)

)2𝑈
>
(
𝐹𝛽(𝑥)

)2𝑈
in (18). As a result,

it follows 𝔼[Δ𝒟] > 0. This indicates that the minimum
chordal distance which accounts for the channel quantization
error is reduced by exploiting our proposed method in the
limited feedback IA systems with a general configuration
of antennas and feedback bits. This result is important to
explain a performance gain of the proposed scheme over the
conventional method, and will be verified through simulations
later.

B. Comparison on the Number of Required Bits

In the following, we study the number of bits required for
the proposed scheme compared to the conventional method.
To this end, we compute the actual value of 𝔼[Δ𝒟] in (17)
first. The second expectation term in (17) is derived as [29]

𝔼

[
max

𝑗=1,⋅⋅⋅ ,2𝑈
∣∣w(𝑙)†

𝑖 c̃
(𝑙)
𝑗

∣∣2]=1−
2𝑈∑
𝑝=0

(
2𝑈

𝑝

)
(−1)𝑝

𝑝(𝑁𝑡𝑁𝑟 − 1) + 1

=1− 2𝑈Ψ

(
2𝑈 ,

𝑁𝑡𝑁𝑟

𝑁𝑡𝑁𝑟 − 1

)
. (20)

Although a closed-form expression of the first expectation
term in (17) is difficult to obtain in general, we can develop it
for a simple 𝑁𝑡 = 𝑁𝑟 = 2 case with the distributions in (15)
and (16).

For 𝑁𝑡 = 𝑁𝑟 = 2, 𝔼[Δ𝒟] is expressed with the result in
(20) as

𝔼[Δ𝒟] = (𝐾 − 1)

{
2𝑈+132

𝑈
2𝑈−1∑
𝑝=0

(
2𝑈 − 1

𝑝

)(
1

2𝑈+1 + 𝑝+ 1

− 1

2𝑈+1 + 𝑝+ 2

)(
− 2

3

)𝑝

+2𝑈Ψ

(
2𝑈 ,

4

3

)
−1

}
. (21)

Figure 2 exhibits the expectation of Δ𝒟 using both the
analysis in (21) and the simulation result with three users.
To obtain the simulation curve in this figure, Monte Carlo
simulations are carried out with the IA configurations in [6].
As can be seen, our analysis provides a good approximation
in the wide range of the codebook bits 𝐵. A small mismatch
is incurred as we simplify the distribution of 𝛽 using (12).
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Fig. 2. 𝔼[Δ𝒟] in 2× 2 systems with 𝐾 = 3.

By utilizing the result in (21), we can compute the number
of bits Δ𝐵 additionally required for the conventional scheme
to attain the minimum chordal distance of the proposed
scheme when 𝐵 is fixed. In other words, Δ𝐵 satisfies

𝔼

[𝐾−1∑
𝑙=1

min
𝑗=1,⋅⋅⋅ ,2 ˆ𝑈

(
1− ∣∣w(𝑙)†

𝑖 c̃
(𝑙)
𝑗

∣∣2)]=
𝔼

[𝐾−1∑
𝑙=1

min
𝑗=1,⋅⋅⋅ ,2𝑈

(
1 −∣∣w(𝑙)†

𝑖 c̃
(𝑙)
𝑗

∣∣2)] (22)

where 𝑈 = (𝐵 +Δ𝐵)/(𝐾 − 1).
Denoting

ℰ(𝑋) = inf
˜𝒞𝑙

𝔼

[
min

𝑗=1,⋅⋅⋅ ,2𝑋

(
1− ∣∣w(𝑙)†

𝑖 c̃
(𝑙)
𝑗

∣∣2)] (23)

as the distortion rate function [26] for a uniformly distributed
w

(𝑙)
𝑖 , we can obtain the relation

ℰ(𝑈)− 𝔼[Δ𝒟]

𝐾 − 1
= ℰ(𝑈 ) (24)

from (9) and (22) with a sufficiently large 𝐵.
Since ℰ(𝑋) in (23) can be approximated as [25]

ℰ(𝑋) ≈
(
𝑁𝑡𝑁𝑟 − 1

𝑁𝑡𝑁𝑟

)
2−

𝑋
𝑁𝑡𝑁𝑟−1 , (25)

we can yield Δ𝐵 with some manipulations after applying (25)
to (24) as

Δ𝐵 ≈ (𝐾 − 1)(1−𝑁𝑡𝑁𝑟) log2

(
2−

𝑈
𝑁𝑡𝑁𝑟−1

− 𝑁𝑡𝑁𝑟𝔼[Δ𝒟]

(𝑁𝑡𝑁𝑟 − 1)(𝐾 − 1)

)
−𝐵.(26)

Specifically, by employing the bounds of ℰ(𝑋) [26]

𝑁𝑡𝑁𝑟 − 1

𝑁𝑡𝑁𝑟
2 − 𝑋

𝑁𝑡𝑁𝑟−1 (1 + 𝑜(1)) ≤ ℰ(𝑋)

≤ Γ
(

1
𝑁𝑡𝑁𝑟−1

)
𝑁𝑡𝑁𝑟 − 1

2−
𝑋

𝑁𝑡𝑁𝑟−1 (1 + 𝑜(1)) , (27)
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Fig. 3. Required number of bits in 2× 2 systems with 𝐾 = 3.

the bound of Δ𝐵 is given as

(𝐾 − 1)(1−𝑁𝑡𝑁𝑟) log2

(
𝑁𝑡𝑁𝑟

𝑁𝑡𝑁𝑟 − 1

(
Γ
(

1
𝑁𝑡𝑁𝑟−1

)
𝑁𝑡𝑁𝑟 − 1

× 2−
𝑈

𝑁𝑡𝑁𝑟−1 − 𝔼[Δ𝒟]

𝐾−1

))
−𝐵≤Δ𝐵 ≤ (𝐾 − 1)(1−𝑁𝑡𝑁𝑟)

× log2

(
𝑁𝑡𝑁𝑟−1

Γ
(

1
𝑁𝑡𝑁𝑟−1

)(𝑁𝑡𝑁𝑟−1

𝑁𝑡𝑁𝑟
2−

𝑈
𝑁𝑡𝑁𝑟−1 −𝔼[Δ𝒟]

𝐾−1

))
−𝐵. (28)

Here the residual terms 𝑜(1) in (27) can be neglected, since
the main order terms are usually sufficiently accurate to
characterize the distortion rate function [26].

Figure 3 plots the total number of bits 𝐵+Δ𝐵 required for
the conventional scheme with respect to that of our scheme
𝐵 with 𝑁𝑡 = 𝑁𝑟 = 2 and 𝐾 = 3. Both the analysis in (26)
and the bounds in (28) well estimate the simulation curve.
From this figure, we can see that the proposed method reduces
a substantial number of feedback bits for various 𝐵. For
instance, approximately 40% of the number of bits is saved by
utilizing our scheme when 𝐵 = 14. In the next section, we will
exhibit the sum rate enhancement of our scheme compared to
the conventional method.

V. SIMULATION RESULTS

In this section, we present the sum rate performance of the
proposed scheme comparing with the conventional one for
limited feedback IA systems through the Monte Carlo simu-
lations. In simulations, we utilize a closed-form IA solution
in [6] for the 𝐾 = 3 case, whereas an iterative IA scheme
in [31] is used for the case of 𝐾 > 3. The number of the
transmitted data streams is set to attain the maximum DOF
[8]. That is, the data stream 𝑑𝑖 for the 𝑖-th transmitter is set
to satisfy 𝑁𝑡 + 𝑁𝑟 − (𝐾 + 1)𝑑𝑖 = 0 for all 𝑖. Also, the
same transmission power constraint 𝑃 is assumed for each
transmitter, i.e., 𝔼[x†

𝑖x𝑖] = 𝑃 for all 𝑖, and the SNR is defined
as 𝑃/𝑁0. The codewords in 𝒞 are generated through RVQ, and
flat Rayleigh fading channels are considered in simulations.

Now we verify a performance gain of our scheme over the
conventional method with various numbers of 𝐵. Figure 4
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Fig. 4. Sum rate comparison in 2× 2 IA systems with 𝐾 = 3.

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

SNR [dB]

S
um

 R
at

e 
[b

ps
/H

z]

4 users with N
t
 = 2, N

r
 = 3

 

 

Perfect CSI
B = 20
B = 15
B = 10
B =  5

Fig. 5. Sum rate comparison in 2× 3 IA systems with 𝐾 = 4.

depicts the sum rate curves of the proposed scheme using solid
lines when 𝑁𝑡 = 𝑁𝑟 = 2 and 𝐾 = 3, while the curves of the
conventional scheme are plotted with dash-dot lines. In this
figure, we see that our method exhibits significantly enhanced
performance compared to the conventional one for overall
SNR regardless of the number of feedback bits. Especially, the
performance gap between the proposed and the conventional
scheme becomes larger as 𝐵 increases. For instance, when
𝐵 = 15 and 20, we can obtain a performance gain of 40%
and 52%, respectively, for the proposed scheme at high SNR.

In Figure 5, we plot the sum rate curves when the number
of users is increased to 𝐾 = 4 with 𝑁𝑡 = 2 and 𝑁𝑟 = 3. In
this case, unlike our proposed scheme, only a marginal gain is
observed in the conventional method as 𝐵 increases. This is
because a reduction in the channel quantization error for the
conventional scheme becomes less significant as the numbers
of antennas and users increase. The proposed method shows
a performance gain of 20% when 𝐵 = 20 compared to the
conventional scheme at high SNR.

For the comparison with a different system configuration,
we depict the performance curves when the numbers of the
antennas are set to 𝑁𝑡 = 3 and 𝑁𝑟 = 2 in Figure 6. The per-
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Fig. 6. Sum rate comparison in 3× 2 IA systems with 𝐾 = 4.
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Fig. 7. Sum rate comparison in 4× 4 IA systems with 𝐾 = 3.

formance of both schemes under limited feedback is degraded
in this figure compared to Figure 5, since incorrect alignment
of interference caused by the imperfect CSI becomes severe as
𝑁𝑡 increases with a fixed 𝐵. Nevertheless, our method exhibits
a sum rate gain of 18% over the conventional scheme with
𝐵 = 20 at high SNR.

Figure 7 illustrates the performance when the number of
antennas is set to 𝑁𝑡 = 𝑁𝑟 = 4 with 𝐾 = 3. When the
number of the feedback bits is fixed, the performance in this
case is lower than that with 𝑁𝑡 = 𝑁𝑟 = 2 and 𝐾 = 3 shown
in Figure 4. This is because more feedback bits are required
with additional antennas in order to maintain the performance,
according to the analysis in [12]. Still, our method exhibits
a sum rate gain of 26% over the conventional scheme with
𝐵 = 20 at high SNR. Again the performance gap between the
conventional scheme and the proposed method becomes larger
as the number of 𝐵 increases. From these simulation results,
we confirm that our scheme shows an improved performance
compared to the conventional method regardless of the system
parameters such as the numbers of antennas, feedback bits and
the SNR value.

To further enhance the performance in both the conven-
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Fig. 8. Sum rate comparison in 2×2 IA systems with the SINR maximizing
receivers and 𝐾 = 3.
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Fig. 9. Sum rate comparison in 2×2 IA systems for heterogeneous channels
Υ𝑖,𝑗 = 5 dB with 𝐾 = 3.

tional and the proposed scheme, the receive combining matrix
R𝑖 in (2) at each receiver 𝑖 can be designed to maximize
signal-to-interference plus noise ratio (SINR) by considering
interferences from other non-corresponding transmitters. A
solution of R𝑖 for this case is found by utilizing the SINR
maximization results in [32]. In Figure 8, we plot the improved
performance curves compared to those in Figure 4 when the
SINR maximizing R𝑖 is employed with 𝑁𝑡 = 𝑁𝑟 = 2
and 𝐾 = 3. As can be seen, the performance gap between
the conventional and the proposed scheme is still maintained
similar to Figure 4. Our proposed method outperforms the
conventional method by 33% at high SNR when 𝐵 = 15.
A similar trend is observed in various user and antenna
configurations.

Finally, we consider the scenario where the channel gains
from different transmitters are heterogeneous due to the
presence of pathloss and shadowing. Denoting Υ𝑖,𝑗 as the
average channel gain regarding H𝑖,𝑗 (i.e., 𝔼[h

(𝑛)
𝑖,𝑗 h

(𝑛)†
𝑖,𝑗 ] =

Υ𝑖,𝑗I𝑁𝑟 , ∀𝑛) [33], we first suppose that at each receiver 𝑖
the channel power Υ𝑖,𝑗 (𝑗 ∕= 𝑖) corresponding to the 𝑗-th
transmitter is greater than that of its respective channel Υ𝑖,𝑖
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Fig. 10. Sum rate comparison in 2×2 IA systems for heterogeneous channels
Υ𝑖,𝑗 = −5 dB with 𝐾 = 3.

as Υ𝑖,𝑗 = 5 dB and Υ𝑖,𝑖 = 0 dB. Figure 9 exhibits the
performance curves of this case with 𝑁𝑡 = 𝑁𝑟 = 2 and
𝐾 = 3. Our proposed scheme shows 45% and 55% gains of
sum rates with 𝐵 = 15 and 20, respectively, compared to the
conventional method at high SNR in this figure. Also, Figure
10 plots the performance when the channel gains Υ𝑖,𝑗 are
reduced to Υ𝑖,𝑗 = −5 dB. In this figure, the proposed scheme
still outperforms the conventional method by 28% and 33%
with 𝐵 = 15 and 20, respectively. These simulation results
manifest that our scheme maintains improved performance
compared to the conventional method even in heterogeneous
channel environments.

VI. CONCLUSIONS

In this paper, we have proposed a new channel quantiza-
tion algorithm for the MIMO IA with limited feedback. By
introducing an additional receive filter at each receiver before
quantizing the channels, we can minimize the chordal distance
to reduce the imperfect CSI error. Unlike the filters for point-
to-point MIMO systems, our proposed filter optimizes the
quantization on the composite Grassmann manifold. Besides,
we have analyzed the difference of the minimum chordal
distance between the conventional scheme and the proposed
method. From the analysis, we have verified that the quantiza-
tion error is reduced in our scheme. Also, we have shown that
the number of required bits to attain a reasonable performance
can be substantially saved by utilizing our proposed method.
As a result, the sum rate performance is enhanced about 50%
by utilizing the proposed method compared to the conventional
scheme at high SNR regime with 2× 2 systems and 𝐵 = 20.
We confirm that the performance gap is increased as the
number of feedback bits becomes larger.
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