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Abstract— In this paper, we present a method to improve
the performance of the four transmit antenna quasi-orthogonal
space-time block code (STBC) in the coded system. For the four
transmit antenna case, the quasi-orthogonal STBC consists of
two symbol groups which are orthogonal to each other, but intra
group symbols are not. In uncoded system with the matched filter
detection, constellation rotation can improve the performance.
However, in coded systems, its gain is absorbed by the coding gain
especially for lower rate code. We propose an iterative decoding
method to improve the performance of quasi-orthogonal codes
in coded systems. With conventional quasi-orthogonal STBC
detection, the joint ML detection can be improved by iterative
processing between the demapper and the decoder. Simulation
results shows that the performance improvement is about 2dB
at 1% frame error rate.

I. I NTRODUCTION

For next generation wireless communications, wideband
channel environments are commonly expected. In such a
channel, several impairments caused by fading channels make
it hard to transmit user data reliably with desired throughput.
Multiple antenna system is one of the most attractive solutions
for such an environment. It has been shown [1] that MIMO
antenna systems provide multiple independent channel, and
thus, the channel capacity increases linearly with the number
of antennas.

There are two approaches for multiple antenna systems.
One approach is to achieve the transmit diversity through
space time coding (STC) [2] and the other is to increase the
throughput using spatial division multiplexing (SDM). The
STC mitigates fading through the spatial diversity by using
multiple transmit and receive antennas combined with match-
ing modulation and coding whereas the SDM increases link
capacity by transmitting independent information streams. In
practical wireless communication systems where the number
of the receive antenna is more restricted than that of the
transmit antenna, STC techniques can be directly adopted.

In this paper, we present a method to improve the perfor-
mance of the quasi-orthogonal space-time block code (STBC)
with four transmit antennas in a coded system. The quasi-
orthogonal STBC is first introduced by Jafarkhani [3]. When
employing four transmit antennas, the hybrid STBC scheme
proposed in [4] outperforms the quasi-orthogonal STBC at 1%
FER with relative low complexity if the number of the receive

antenna is more than one. However in one receive antenna
case, the hybrid STBC fails to work since the equivalent
channel matrix does not have full rank.

Our design goal is to improve the quasi-orthogonal STBC in
single antenna case although our solution also works for mul-
tiple receive antennas. The quasi-orthogonal STBC consists
of two symbol groups which are orthogonal to each other,
but intra group symbols have no orthogonality. In uncoded
systems, the constellation rotation method proposed at [5]
can improve the system performance for detecting symbols.
Increased minimum Euclidean distances within inflated con-
stellation by constellation rotation reduces the symbol error
probability [5]. However, its gain is diminished in coded
system because of error correcting capabilities of channel
codes.

In this paper, we propose an iterative decoding method
for improving the quasi-orthogonal STBC in coded systems.
Among various ways to employing channel codes to combat
impairments caused by fading and additive noises, we adopt
bit-interleaved coded modulation (BICM) [6] for our scheme.

This paper is organized as follows: In section II, we
describe the system model of the quasi-orthogonal STBC and
combine with BICM. In section III, we present two detection
methods for a quasi-orthogonal STBC. Our proposed iterative
receiver is presented in section IV. Finally, we exhibit the
simulation results and the conclusion in section V and VI,
respectively.

II. SYSTEM MODEL

In this section, we review the quasi-orthogonal STBC and
present basic configurations for our proposed system. Our
system assumes that information sequences are mapped by
the BICM and transmitted over block fading channels.

The quasi-orthogonal STBC for four transmit antennas is
constructed as [3], [5], [7]

G(s) =




s1 s2 s3 s4

s∗2 −s∗1 s∗4 −s∗3
s3 −s4 −s1 s2

s∗4 s∗3 −s∗2 −s∗1


 (1)

wheres = [s1 s2 s3 s4]T .



CHANNEL
ENCODER

SPACE-
TIME

ENCODER
S/PINTERLEAVER

MAPPER

MAPPER

Fig. 1. Transmitter structure for the 4 antenna quasi-orthogonal STBC

This code can be divided into two orthogonal
group G(s1, 0, s3, 0) and G(0, s2, 0, s4), and we have
GH(s1, 0, s3, 0)·G(0, s2, 0, s4)+GH(0, s2, 0, s4)·G(s1, 0, s3, 0)
= 0 where(.)H denotes the Hermitian transpose. We assume
the quasi-static channel model in which channel frequency
responses stay constant during the STBC block period
TSTBC . For the STBC represented in (1),TSTBC equals
4. With one receive antenna, the received signal can be
expressed by

y = H1

[
s1

s3

]
+ H2

[
s2

s4

]
+ n (2)

where

H1 =




h1 h3

−h∗2 −h∗4
−h3 h1

−h∗4 h∗2


 H2 =




h2 h4

h∗1 h∗3
h4 −h2

−h∗3 h∗1




y =
[

y1 y∗2 y3 y∗4
]T

n =
[

n1 n∗2 n3 n∗4
]T

.

Herehi denotes the channel frequency response from thei th
transmit antenna to the receive antenna and the noiseni are
mutually independent zero mean complex Gaussian variables
of varianceN0/2 per dimension. Using above equations, each
symbol pair[s1 s3]T and [s2 s4]T should be detected jointly.
We refer to these symbol pairs as intra block symbols.

In this paper, we will concentrate on the block fading
model describing wireless local area network system with slow
movement. Denotinghi,k as the channel frequency response
from the i th transmit antennas at timek, it is assumed to
stay invariant during the block periodTSTBC · F where F
denotes the number of code words. With this assumption, the
time index k is omitted in (2) for simplicity. The channel
coefficientshi are independent complex Gaussian with zero
mean (Rayleigh fading).

Figure 1 shows the transmitter structure for the four transmit
antenna quasi-orthogonal STBC system. Information bit se-
quences are encoded by convolutional encoder and interleaved
by a bit level random interleaver with the size ofF ·Nt ·log2 M
whereM is the constellation size. Then interleaved sequences
are space-time encoded after mapping. Correlations between
adjacent coded bits are eliminated by the interleaver.

III. D ETECTION OF THEQUASI-ORTHOGONAL STBC

In this section, we will present two detection algorithms for
detecting the transmitted signal through the quasi-orthogonal
space time coding. One is to apply the channel matched filter
[7] and the other is to employ the joint maximum likelihood
detection [8].

In [7], the detection of the quasi-orthogonal STBC utilizes
the channel matched filterH1

H and H2
H . By multiplying

H1
H andH2

H to the received signal, two orthogonal blocks
are represented as,

[
rMF,1

rMF,3

]
=

[
γ α
−α γ

] [
s1

s3

]
+

[
ñ1

ñ3

]

[
rMF,4

rMF,2

]
=

[
γ α
−α γ

] [
s4

s2

]
+

[
ñ4

ñ2

]
(3)

where

γ =
4∑

i=1

‖hi‖2

α = 2j={h∗1h3 + h∗4h2}
and=(.) denotes the imaginary part of a complex value. Here,
α represents the interference caused by the non-orthogonality
in the intra STBC block and the filtered noisẽni becomes
colored.

Consider the singular value decomposition (SVD) ofHi =
UiSiW

H
i whereUi and Hi are unitary matrices. Due to the

unitary property, employingUH
i as matched filter leaves the

distribution of noise unchanged and the equivalent channel as
SiW

H
i . Multiplying UH

1 to (2) yields two sets of equations
for i=1 and 2 as [5]

ri =
√

ρ/4

√
γ + (−1)i−1α/j

2
(s1 + j(−1)i−1s3) + ñi

where ρ denotes the received SNR and̃ni represents the
filtered noise. Note that both thes1 ands3 are scaled by the
same gain irrespective of the channel. Then, each signals1

ands3 can be detected by applying joint ML detection.
If the symbolss1 and s2 are drawn from constellationχ1

and χ2 of size M , then the inflated constellationsBi of the
received symbol̃ri = s1 + j(−1)i−1s3 will be of maximum
sizeM2. The probability of error for the received symbolr̃i is
determined by the minimum Euclidean distance inBi. When
the same constellation is employed for eachχj , the size of
Bi can not beM2 since overlapped constellation points are
introduced. The overlapped constellation points cause the min-
imum distance of the constellation to equal zero. To prevent
this situation , [5] proposed the constellation rotation method.
All constellation points inBi become distinct by rotating one
of χi in the same orthogonal block. The rotation results in the
size ofBi to beM2. Thus the probability of symbol error is
reduced by having nonzero minimum Euclidean distance.

Another detection method for quasi-orthogonal STBC is a
joint ML detection. In (2), it is obvious thatH1 and H2

are orthogonal to each other. Because of the orthogonality



betweenH1, H2 (H1
HH2 = H2

HH1 = 0), the ML metric
for detectings is

min
s∈χ4

‖y −H1

[
s1

s3

]
−H2

[
s2

s4

]
‖2 (4)

whereχ is the signal constellation alphabet. Then, also (4) is
equivalent to minimize the following two metrics [8], we can
show that

min
s1,s3

‖y −H1

[
s1

s3

]
‖2

min
s2,s4

‖y −H2

[
s2

s4

]
‖2 .

Unlike the matched filter detection in [5], each signal is not
scaled by the same amount in the ML detection. In the case
of different channel gains for each signal, the constellation
rotation has little effect on the performance since each channel
frequency response for the signal introduces phase shift which
has the uniform distribution between 0 and2π. Therefore,
the optimal phase shift value which maximizes the Euclidean
distance among two constellation set is difficult to determine
because the relative phase shift is time varying with respect
to fading coefficients.

IV. QUASI-ORTHOGONAL CODE WITH ITERATIVE

DECODING

In the previous section, we have introduced the constellation
rotation proposed in [5]. This achieves full diversity in un-
coded system, and the probability of symbol error is reduced
due to the increased minimum Euclidean distance. However,
if we apply channel coding to information sequences, the gain
obtained by the constellation rotation may be absorbed by
coding gains.

In coded systems, maximizing the coding gain is important
to improve the system performance. Iterative decoding is one
of common approaches to improve the decoder performance.
In this section, we will propose an iterative detection method
for the quasi-orthogonal STBC. The receiver structure of our
proposed system is depicted in Figure 2. As shown in Figure
2, it can be considered as the serial concatenated code with the
quasi-orthogonal STBC as an inner code and the convolutional
code as an outer code.

The ML detection in (4) can be improved by iterative
processing between the demapper and the decoder in the coded
system. After each iteration, reliability value of soft decision
bits are increased. Since the joint ML detection is performed at
the demapper, soft decision bit information from the previous
stage decoder are used for updating the intrinsic probability
of the current stage demapper [9].

We assume that the channel state information is perfectly
known to the receiver. Soft information computed at the
demapper is passed to the decoder to estimate the transmitted
signal. Before passing soft information to the decoder, dein-
terleaving is performed to ensure that sequences used by the
demapper and the decoder to be independent.

P/S Bit
Deinterleaver

SISO
Decoder

S/P
Bit

Interleaver

F Components
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Orthogonal
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t

Output
Bits

.
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Fig. 2. Receiver structure for the quasi-Orthogonal STBC with iterative
decoding

Denoting the bit-interleaved encoded symbol asdi =
[d1

i . . . d
log2 M
i d

log2 M+1
i . . . d

2 log2 M
i ]T , the modulated signal

si,si+2 are mapped assi = µ(d1
i . . . d

log2 M
i ) and si+2 =

µ(dlog2 M+1
i . . . d

2 log2 M
i ) for i = 1, 2. Here, µ(.) denotes a

mapping function of the constellation. Let the setSi,m
d ,d = +1

or d = −1 be the set of all symbol vectors with a +1 or -1
value of bitdm

i respectively. The size of such a set is22 log2 M .
The soft output bitLe(dm

i ) of the demapper for the bitdm
i is

defined as

Le(dm
i ) , log

∑
si∈Si,m

+1
P (si ∈ Si,m

+1 |x̃,H1,H2)
∑

si∈Si,m
−1

P (si ∈ Si,m
−1 |x̃,H1,H2)

. (5)

Using the Bayes’ theorem, we have

P (si|x̃,H1,H2) =
P (si)P (x̃,H1,H2|si)

P (x̃,H1,H2)
. (6)

whereP (si) is the intrinsic probability which is passed from
the soft-in/soft-out (SISO) decoder of the previous stage. This
can be derived as

P (si) ∝ exp(dT
i Li/2) (7)

whereLi is a column vector of length2 log2 M comprised of
the soft bit dm

i passed from the decoder. Initially,Li is set
to all zero column vector. This information helps decoupling
the overlapped signal in the same orthogonal group, and thus
can improve the overall performance for the quasi-orthogonal
STBC detection.

The extrinsic probabilityP (x̃|s̃i) is obtained by

P (x̃|si) ∝ exp(− 1
N0
‖x̃−Hisi‖2) . (8)

This extrinsic probability is a metric for selecting the
symbol which has the minimum squared Euclidean distance
among all possible constellation points. By using (5)-(8), the
soft decision value for demapper is obtained and improve the



reliability of the soft decision by subsequently updating the
intrinsic probability throughout iterations.

Now we will analyze the performance for the iterative
decoder. The union bound of the bit error probability for BICM
using convolutional codes with rateRc = kc/nc is given by
[10]

Pb ≤ 1
kc

∞∑

d=dH

WI(d)f(d, µ, χ) (9)

whereWI(d) represents the information error weight of error
events with Hamming distanced, dH stands for the free
Hamming distance of the code andf(d, µ, χ) denotes the
pairwise error probability (PEP) of the BICM with Hamming
distanced. This PEP assumes a code sequenceS is transmitted
but a code sequencêS is selected at the decoder.

Now, we assume the block fading channel. Then the pair-
wise error probability can be written as

P (S → Ŝ) = E[Q(
‖H∆‖√

2N0

)] (10)

whereS = [s1 . . . sF ] is the received signal,∆ is defined as
S − Ŝ and Q(x) = 1√

2π

∫∞
x

et2/2dt. As in (9), the bit error
probability is a function of information error weight and the
pairwise error probability. The information weight distribution
depends only on channel codes selected [10].f(d, µ, χ) is
related to the channel condition and the detection scheme. As
shown in (10), to improve the performance, the PEP should
be decreased.

The PEP can be further calculated by the complex inte-
gration of its moment generation function (MGF) [11]. Thus
f(d, µ, χ) can be obtained by

f(d, µ, χ) =
1

2πj

∫ c+j∞

c−j∞

Φ∆(s, d)
2s

ds

=
1

2πj

∫ c+j∞

c−j∞

Φξ(s, d)
2s

(1− 2s)1/2ds (11)

where Φ∆(s, d) and Φξ(s, d) are the MGF of∆ and ξ =
‖H∆‖2

2N0
with Hamming distanced, respectively. The MGF of

ξ can be computed as [11]

Φξ(s, d) = Eξ[e−sξ]

=
1

det[INt + s∆∆H/(2N0)]
(12)

whereEξ[.] denotes the expectation with respect toξ andINt

is theNt by Nt identity matrix.
Minimization of the PEP is equivalent to minimizing the

MGF in (12). The dominant term in (12) is∆∆H which
denotes the squared Euclidean distance between two code
words. Without iterations, it is proportional to the minimum
squared distance for given constellation. However, the iterative
process increases the reliability of soft values and makes it
possible to approach error-free feedback. This ideal feedback

results in M-QAM channel being transformed intolog2 M
independent BPSK channels [12]. With this assumption, (12)
can be simplified to

Φξ(s, d) ≈ Ed[
2∏

t=1

1

1 + 1
2N0

∑dt

i=1 ‖x̃t
i − ˆ̃xt

i‖2
] (13)

where d = d1 + d2 , x̃t = [st st+2]T and Ed[.] denotes
the expectation with respect tod. The ideal feedback means
that the demapper has the perfect knowledge of other bits
except the bit to detect. In that situation, the squared Eu-
clidean distance which affect the pairwise error probability
is not the minimum squared Euclidean of the combined two
signal constellations but the distance between two points in
the constellation which differs only one bit to be detected.
Thus iterative process improves the system performance by
decreasing the PEP. This is equivalent to maximize the term
‖x̃t

i − ˆ̃xt
i‖2 in (13). Derivation off(d, µ, χ) for fast fading

channels is straightforward.

V. SIMULATION RESULTS

In this section, we present simulation results to compare
the proposed system with the conventional quasi-orthogonal
STBC system. The spectral efficiency of the system is given
as [9]

RT =
Rc ·Nt

TSTBC
· log2 M bps/Hz

where Rc denotes the convolutional code rate andTSTBC

represents the block period for the STBC. We assume quasi-
static channels such that the channel frequency response stays
invariant duringTSTBC . Throughout simulations, the symbol
length of one frame F is set to 256 which results in the size
of interleaver to be 1024.

In Figure 3, we show the effect of the constellation rotation.
We will compare coded system with uncoded system in [5] as
a function of signal-to-noise ratios (SNR) and bit error rates
(BER). Here we assume that channel frequency responses are
uncorrelated between STBC blocks but stay invariant during
the block periodTSTBC as in [5].

In coded systems, we use 16-QAM constellation with gray
mapping, and a convolutional encoder withK = 7. For
spectral efficiencies 2bps/Hz and 3bps/Hz in coded systems,
we employ the convolutional code with rate 1/2 and the
punctured convolutional code with rate 3/4 defined in [13], re-
spectively. To make 2bps/Hz and 3bps/Hz in uncoded systems,
we utilize QPSK and 8-PSK constellation with gray mapping.
Optimal rotation angles are chosen as 0.53 radian for QPSK
constellation and 0.3 radian for 8-PSK constellation [5].

As shown in Figure 3, the constellation rotation outperforms
the quasi-orthogonal STBC with no rotation in uncoded sys-
tems as reported at [5]. However, its gain is almost completely
diminished in coded systems.

Now, we will exhibit results in coded systems by applying
an iterative process. In coded systems, information sequences
are encoded by convolutional code and one physical frame
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Fig. 4. Performance of quasi-orthogonal STBC with iterative decoding at
2bps/Hz and 3bps/Hz in block fading channel

size is set to be equal to the interleaver size. We assume
block fading channels that channel frequency responses stay
invariant during transmitting one physical frame. Since chan-
nel coding and interleaving are performed in a frame base, we
plot simulation results for coded systems in terms of frame
error rates (FER).

In Figure 4, we plot performance results with various
iterations at 2bps/Hz and 3bps/Hz. As shown in the plot, the
performance improvement is about 2dB at FER =10−2 and
saturated at more than 2 iterations. This indicates that the
proposed iterative decoding scheme is effective in improving
the decoder performance.

VI. CONCLUSION

In this paper, we propose a method for improving the quasi-
orthogonal STBC performance with iterative decoding. In gen-
eral, the iterative decoding can improve overall performance
whenever there exists signal processing loss in detection mech-
anism. We have shown that our proposed detection scheme
outperforms the conventional quasi-orthogonal system by 2dB
and 2 iterations would be enough for the iterative detection
scheme to converge in coded system.
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