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Abstract
Among applications for short binary block codes are the transmission of header and control
information in packets in e.g. digital audio broadcasting. In this paper, we give an inventory of
good short binary block codes with information blocks of length equal to multiples of half bytes.
We also compare these block codes with tailbiting convolutional codes. For high signal-to-noise
ratios, the minimum Hamming distance and the corresponding error coefficient dominates the block
error probability performance in the additive white Gaussian noise (AWGN) channel. We
demonstrate that the choice of shortening affects the weight spectrum of the code when the length
of shortening is greater than a certain number. We also show that some shortened codes are
transparent. General properties of shortened dwmin=3 Hamming codes and extended dmin=4 Hamming
codes are illustrated. An upper bound on the error coefficient for all shortened codes is derived. We
also present some code search results for the optimum shortened (19,8), (20,8) codes (shortened
from the Golay code) and (26,16), (27,16) codes (shortened from the (31,21) BCH code) as well as

short shortened Hamming codes.

1. Introduction

For many applications, eg. in Digital Audio
Broadcasting, there exist short packet headers that
need protection by means of short binary block
codes [1] [2] [3] [4], where error correction and
detection applications are of interest. In this case,
both hard decision decoding and soft decision
maximum likelihood decoding (MLD) [4] are possible.
For the soft decision MLD, tailbiting convolutional
codes [5] with efficient decoding [6] [7] can be
employed. In this paper, we will study the issues
regarding the performance of shortened binary block
codes. A code is shortened by deleting a message
coordinate from the encoding process.

It turns out that independently of decoding methods,
the minimum Hamming distance and the error
coefficient A, determine the performance for high
signal to noise ratio (SNR) for the additive white
Gaussian noise (AWGN) channel with coherent
BPSK and QPSK modulation [8]. This is also the
case for hard decision decoding in a binary
symmetric channel with the low cross over
prohability p [4] [8]. Furthermore, for Rayleigh
fading channels it is also of interest to keep A, as

small as possible.
Even with maximum a posteriori probability (MAP)

decoder [9] [10] [11], A, determines the probability
of word errors for high SNR, thus we need to
minimize A, We will see that for some shortened
block codes, the weight spectrum for a given
number of shortening bits is affected by the choice
of the shortening pattern, when all other parameters
such as code rate and code length are the same.

We are particularly interested in codes of size equal
to multiples of half byte in the information bit field.
An inventory of the minimum distance of such linear
binary codes has been constructed in [12] [13] [14].
We present numerical search results of the weight
spectra for the (19,8) codes shortened from the
(23,12) Golay code and the (20,8) codes

shortened from the extended (24,12) Golay code for
different shortening patterns. We also illustrate
results for shortened Hamming and BCH codes.

In the spirit of [1] where the impact of shortening
on the weight spectrum and the performance of
some short shortened Hamming block codes was
studied, we also simple general
analytical bounds on the dominating components of
the weight spectrum. For perfect codes, we arrive at

a simple exact expression on A, We also discuss

derive some

the impact of shortening in general on the weight



TABLE 1
MINIMUM CODEWORD LENGTH n FOR INFORMATION BITS k& AND
MINIMUM DISTANCE dmin FOR THE BEST CODES FROM [12]-[14]

K dhin 3456789101112
8 12 13 16 17 19 20 25 26 28 29
12 17 18 21 22 23 24 30 31 33 34
16 21 22 26 27 30 31 35 36 39 40
20 25 26 30 31 35 36 40 41 43 44
24 29 30 35 36 40 41 45 46 47 48
28 34 35 39 40 44 45 51 52 55 56
32 38 39 43 44 49 50 56 57 59 60
36 42 43 47 48 53 54 60 61 53 54
40 46 47 52 53 57 58 64 65 70 74

spectra of codes. In particular, transparent codes
where the all one sequence 1s a codeword are
transparent codes have
advantages over nontransparent codes in designing
diagnostic routines for semiconductor memories with

error correcting codes [1].

In this paper we also compare short shortened
block codes with short tailbiting convolutional codes
with the same rate [15].

The remainder of the paper is organized as follows:
Section 2 presents an inventory of good short binary
block codes and compare with tailbiting codes. In
section 3 we discuss the performance of short block
codes with hard and soft decoders. This leads to the
search for the optimal shortened codes in section 4.
Finally the paper is terminated by a conclusion.

considered, since some

2. Short block codes

In the literature there are a number of short linear
binary block codes (see [12] [13] [14] and references
therein). Table 1 summarizes these results with the
minimum block length n for given k and the
minimum Hamming distance d,,;,. Here we list the

information bit block length k in the increment of
half byte size (4bits) from k=8 to k=40 at the
minimum Hamming distance of d ., =3,4,...,12. The
two left most columns (d,;,=3 and 4) in the

table represent the shortened Hamming codes and
the extended Hamming codes. Most of the codes in
Table 1 are obtained by shortening a full length
code. For details, see [12] [13] [14]. Here we will
pick a few of the codes in Table I and optimize
the shortening patterns in terms of the minimum
error coefficient.

Alternatives to the block codes in Table 1 are
tailbiting convolutional codes, [5] [6] [15].
these codes are convolutional, they have a trellis
structure for Viterbi or MAP decoding [6] [15]. A

Since

TABLE 1
COMPARISONS OF SOME OPTIMAL SHORTENED BLOCK CODES TO
TAILBITING CODES FROM [15] WITH THE SAME RATE AND LENGTH

Block codes Tailbiting codes
Rate
n Ik lrin m Hdmin hin
2/3 12 8 3 2 16 3
2/3 26 24 6 5] 1048 6
1/2 43 24 12 8 372 10

few of the codes in Table 1 are compared with
tailbiting codes in Table II. Table II compares of
some optimal shortened block codes to tailbiting
codes from [15] with the same rate. Most of the

code rates k/n in Table I
comparable to simple rational values like 2/3 and
1/2 but those in Table II are. Table I lists the
tailbiting codes with the minimum distance d .,

are not directly

memory m ( 27 states ) and the number of error
sequences of weight d.;, equal to n, . We notice
that the distance properties for the block codes and
the tailbiting codes are quite comparable. For k=24,
the tailbiting codes may be preferable for soft
decoding because of lower decoder complexity.

3. Performance of short block codes with
various decoding
For binary symmetric channels, we obtain the word
error probability of an (n,k) binary block code with
the minimum distance d,;, (odd) and 2t+1=d
using a bounded distance hard decision decoding [3]
[4] as
n n . nei
P(E)= 30 (7 p/(1-p)"

where the equality holds for perfect codes.
In [2], we show that for all shortened binary block

(1)

codes
Ao = %
( r;m ) (2)

with equality for a few perfect binary codes such as
Hamming codes with d,;,=3 and Golay codes with
doin=7. We have found empirically that the bound
on A, is quite tight for shortened perfect codes,

while it is somewhat loose for nonperfect codes.
The probability of undetected error is given as

n

P,= 2 Ap'(1-p)"’

J=d i (3)
which can be approximated as for small p
d i
P”...,A d il (4)



Thus it is of interest to choose a small A, for a
given d=d ..

For the hard decision MLD, the word error rate is
upper bounded by

P(E)ﬁ 2 Adpu.d —_
d=d yin (b)

where P ,; for hard decision decoding is given as

S (Lt odd
+ c,:%;:.]( ’; )De(l—p)jfe, J even

In contrast, with the soft MLD, the word error rate
is upper bounded by [4] [16]

n

P(E)= 3] AJ-Q( SiR E”)

J =t in NO (7)
which is approximated for high SNR by
E,
P(E)~A ,_ ( 2 i R )
(E) e N, ®)

where R=£.
n

We note that other than the minimum distance
dyin, it is also important to minimize A, . With
a sequence MAP decoder [9] [10] [11], an expression
similar to (5) can be derived, where individual a
priori probabilities of the transmitted bits affect the
metric values used in the decoder and the modified
distance measure. However, a priori probabilities do
not affect the performance for high SNR [9]. In
summary, independently of the wvalue of a priori
probabilities, it is a good choice to select a code
with maximum minimum distance d=d.; and the
minimum number of codewords of weight d .,
Ay
4, Optimal shortening and code search
results

In [1] some transparent Hamming codes were
studied and it was noticed that different shortening
patterns with the same number of shortening bits s
could produce codes with the
distance d,.;, and rate (the same n and k) but
with a different weight spectrum. It appears that
this observation applies to any shortened code. For

same minimum

small s wvalues, all our search results indicate that
the weight spectrum is unique independently of the
shortening pattern. However as s increases, a
multiplicity of the weight spectra starts appearing

with an growing number of different spectra. As
was noted in [4], for shortened d,;,=3 Hamming

codes, there exists a shortening with A;=0 which
gives rise to d,;,=4. This was also observed in
[1]. Thus, if a multiplicity of weight spectra exists,
it is expected that the one with the smallest A ;

is in most cases preferable. The choice of such a
shortened short code often comes with no extra cost.

A. Properties of shortenings

Any shortened single parity d.,=2 code has a
unique weight spectrum. There are several properties
associated with transparent codes. First, only codes
with odd k are transparent. Also any perfect
din=3 Hamming code is transparent. Shortenings
with s<d,; vield a unique weight spectrum and
nontransparent codes. For the case of any perfect
(n,k) Hamming code, the parity check matrix H
contains all binary column vectors of length n-k
bits except for the all zero sequence [3]. Using this
fact, it is easy to show analytically that any
shortening with s=1 generates the same weight
spectrum because the parity check matrices of any
two codes with different s=1 shortenings produce
the same code word set. It is straightforward to
apply the same reasoning to shortenings with s=2
where one position overlaps in the two shortening
patterns. For the case of two completely different
s=2 shortenings, we hypothesize that for all
Hamming codes there is only one unique weight
spectrum. The numerical results for short codes
support this conjecture.

For s=d,;,, there exist a weight spectrum which
corresponds to a transparent code and at least one
other weight spectrum which corresponds to a
nontransparent code. For the case of d,;,=4, this
is obtained by an overall parity check bit. If the
weight spectrum is unique for the codes with
din=3 case, the same is true for codes with
dmin=4. For d,.;, greater than 4, eg d =5,
the same conclusion as above applies for transparent
shortened codes. Thus for s=d.;,, at least one
transparent shortened code exists if the full length
code is transparent. At the same time, at least one
nontransparent code with s=d,;, also exists. As a
result, there are at least two weight spectra for
S=d in-

In contrast to the Hamming codes, a multiplicity of



weight spectra may appear for codes with d ., =5
and s=d,;.,, as we will see from the numerical
results. In sections IV-B and IV-C below, we give
some examples of results from the code search for
the best shortening patterns for the (23,12) Golay
code and the (31,21) BCH code. The more detailed
codes are reported in [2], where we have also given
some results for shortened d.;,=3 and d,;,=4
Hamming codes.

B. Code search results for the
shortened (23,12) Golay code and the
extended (24,12) Golay code
It should be noted that a time-reversed version of
the generator polynomial exists for these codes
vielding the same weight spectra set as those
reported below for any shortening. Furthermore, any
noncyclic code which can be formed from reordering
of the bits in the full length codes used below also
vields the same set of weight spectra for all
corresponding shortened codes.

The generator polynomial for the
code is given as

g(X)=1+X%+ X'+ X7+ X+ X0+ x !
The alternative generator polynomial
go(X)=1+X+ X+ X+ X7+ X7+ X"
will give the same weight spectra results for all
shortening values s, since g,(X) is a time-reversed
version of g;(X). All shortened (19,8) codes have
the same weight spectrum given in Table I, which
is not a transparent code as expected. In all the
tables, P indicates shortening pattern. A zero in the

P means that the code bit is not to be transmitted.
TABLE I
SHORTENED (19,8) GOLAY CODE (duin=7, s=4)

(23,12) Golay

Aa (d=duin,drint1,...,20) 5278007248004 1000
P 111111110000

TABLE IV

SHORTENED (208) GOLAY CODE (din=8, s=4)

Aa (d=duin,drint1,...,21) 13000012000050000

P 111111110000
The extended (24,12) Golay code is obtained by
adding an overall parity bit to the cyclic (23,12)

Golay code. The shortened (20,8) code also has
only one weight spectrum given in Table IV. This
code is also nontransparent. More detailed results
about shortened Golay codes with other shortening
values are given in [2].

C. Code search results for the shortened

(31,21) BCH code and the extended

(32,21) BCH code

The (31,21) BCH code used is generated by
2(X)=1+ X+ X7+ X%+ X*+ X7+ X1°

The extended (32,21) BCH code is obtained by

adding an overall parity bit. Various power spectra

for the shortened (26,16) code with d,;, =5 are

shown in the Table V where A; varies from 69 to

76. We note that the best and worst codes are
nontransparent. The best transparent (26,16) code
with A5=70 is also given in Table V with its
corresponding shortening pattern.

Corresponding results are repeated for the shortened
(27,16) code with d,;,=6. In contrast to the

shortened Golay code results, we now get a
multitude of weight spectra since the shortening is

beyond the minimum distance d,.;,. For detailed

results for a different number of shortening bits, see
the search results in [2]. In Table V, we also show
the weight spectra for two shortened codes with
s=9 from the (31,21) BCH code above, namely

the (22,12) code with d,;,=5 and the (23,12)
code with d,;,=6. Note that the difference in A,

between the best and the worst cases with s=9

now increases compared to the case with s=5. For
the Golay code, multiple weight distributions are
demonstrated in [2], where we also give data for
short shortened Hamming codes as well as short
shortened extended Hamming codes.

5. Discussion and Conclusion

We have studied short shortened binary codes and
conclude that in some cases there is a room for an
improved performance by selecting the best
shortening. We have drawn some general conclusions
of the impact of different shortenings on the weight
spectrum and on the transparency of the shortened
codes. A general upper bound have been derived on
the dominant error coefficient A, for any shortened

code. Numerical code search results are given for a
few selected shortened codes. A simple comparison
has also been made to tailbiting convolutional codes.
We notice that in most cases the choice of
shortening patterns affects the weight spectrum.
Since this gain normally comes for free, we might
as well use it. For illustrative purposes, we choose
to perform computer search for some selected codes
only. These results imply, however, that if shortened



TABLE V
(26,16), (27,16), (22,12) and (23,12) SHORTENED BCH CODE

| d Ad| 1000069 255 671 1554 2920 4992 7792 9776 9882 9110 7750 5349 2944 1496 680 216 57 193 0 0 0
(%6.16) est code 17 111111111111001111000
L0 10 — — — — —
SHORTENED| worst code Ad| 1000076 251 640 1570 2960 4976 7808 9760 9800 9150 7808 5333 2960 1480 640 232 76 150 0 0 0
BCH CODE p 111110111001 111111010
dmin=D, §=5 best Ad 1000070 256 630 1530 2840 5117 8024 9480 9540 9480 8024 5117 2840 1530 680 256 70 0 0 0 0 1
transparent
code | P 111110111111101110100
a7 10 Ad 100000 3220 2235 0 7896 0 17568 0 19020 0 13071 O 4440 0 912 0 66 0 50 0 O
27,16) best code
SHORTENED P 111111111111111001000
BCH CODE — — — . —
PR  code LA 1000003270 2210 07936 0 17568 0 18950 0 13141 0 4440 0 872 0 91 00 0 0 0
' worst code [Ty 111111111110111110000
Ad 10000 20 101 160 329 460 577 768 619 460 335 160 74 20 11 01 0 O
best code
(92.12) P 101101011 1T11001101000
3 -'.‘, A o) Ad 1000037 84 157 332 467 370 719 668 467 328 179 55 21 101 0 0 0O
SHORTENED| yorst code 2 A 2 2
BCH CODE P 1101100001 0101 1111100
dmin=b, =9 best Ad 10000 26 85 180 306 454 632 728 632 454 306 180 85 26 0 0 0 0 1
transparent
code P 0111111001111 1001000°¢0
5219 Ad 100000104 05160 1044 0 1366 0 300 0 227 0 36 020 00
(23,12} best code
SHORTENED P 11010111111 1101000000
BCH CODE Ad 100000 1235 0477 0 1067 O 1347 0 825 022203301000
(ﬁ-nm—(‘.‘r ‘5—(] WOI‘St COde
P 1111110101001 11 100000

codes are preferred for certain applications, an
optimization of the shortening pattern is worthwhile.
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