A New Architecture For The Fast Viterbi Algorithm

Inkyu Leet

Jeft L. Sonntagf

tLucent Technologies, Bell Laboratories
Murray Hill, NJ 07974

iLucent Technologies, Bell Laboratories
Allentown, PA 18103

Abstract

A novel architecture design to speed up the Viterbi al-
gorithm is proposed. By doubling the number of states
in the trellis, the serial operation of a traditional Add-
Compare-Select (ACS) unit is transformed into a parallel
operation, thus achieving a substantial speed increase.
The use of the proposed architecture would increase the
speed by 33% at the expense of a faily modest increase
in area, thus removing the Viterbi detector/decoder from
the worst case speed bottleneck path in most high-speed
applications. A simple example is shown to illustrate
the proposed algorithm in Maximum Likelihood Sequence
Detector.

1 Ihtroduction

The Viterbi algorithm was first introduced in 1967 as a
means to decode convolutional codes [1]. And later For-
ney [2] showed that the Viterbi algorithm can be applied
to implementing a Maximum Likelihood Sequence Esti-
mation (MLSE). Since then, the Viterbi algorithm has
been widely used in many communication systems in both
ML convolutional decoder and ML sequence detector.

Many high speed applications adopt the Viterbi algo-
rithm operating at several hundreds Mbps and this oper-
ating clock speed has been increasing constantly. These
examples include the ML sequence detector in magnetic
recording systems and convolutional decoders for error
correction. So there has been a strong need to achieve a
higher speed and this motivates the work presented here.

The main operation unit performing the Viterbi algo-
rithm is called an Add-Compare-Select (ACS) unit. How-
ever, due to the feedback loop, the ACS unit is considered
as the bottleneck in actual implementation of high speed
applications.

Several architectures have been proposed to speed up
the Viterbi algorithm operation. In [3, 4], they increased

the speed throughput of the Viterbi algorithm by having
multiple ACS units in a parallel implementation, thus
trading area for speed. In their approaches, the main
structure inside the ACS unit remains the same. Black
et al [5] also extended the parallel processing by applying
one stage of lookahead to both the ACS and trace-back re-
cursions, resulting in a radix-4 ACS and a radix-16 trace-
back iteration.

In this paper, we propose a new architecture of the ACS
unit [6] that speeds up the Viterbi algorithm by doubling
the states of the trellis. By reformulating the Viterbi
algorithm, the proposed architecture provides an alterna-
tive approach to high throughput design. We will refer
to the proposed architecture as the “double state”. By
having the “double state”, a serial operation of the ACS
unit can be transformed to a parallel operation. This new
approach enables us to break the ACS speed bottleneck
with a fairly modest increase of area.

This paper is organized as follows. Section 2 briefly de-
scribes the Viterbi algorithm and the ACS unit. The new
architecture for the fast Viterbi algorithm is proposed in
Section 3. In Section 4, a simple example for the pro-
posed architecture is provided for Maximum Likelihood
Sequence Detector, and projection for area and speed is
presented. Also a brief comparision between the proposed
architecture and the parallel processing approach intro-
duced in [5] is made. Finally, Section 5 discusses the
summary.

2 The Viterbi Algorithm

In this section, we will briefly explain the Viterbi algo-
rithm and also introduce the notations used throughout
this paper.

Consider the Maximum Likelihood Sequence Detector
case first. Assuming the channel response polynomial
H(D) is given where D denotes a delay operator, the
Viterbi algorithm recursively optimizes the most-likely

0-7803-6451-1/00/$10.00 © 2000 IEEE
1664

time n time n+1

SM!

Figure 1: The state metric update

path by accumulating the branch metric (BM) for each
state where the number of states is determined by m™.
Here m represents the size of the input alphabet and NV
denotes the channel memory length. BM for each tran-
sition in a trellis is computed using H(D) and its trellis
input corresponding to the transition.

In each state of a trellis, the previous state metric and
the corresponding branch metric are added together and
then the accumulated State Metric (SM) is updated by

choosing the minimum of all possible cases recursively:
SM,?+1 = min(SM] + BM,
y ,

where SM represents the state metric of the ¢ th state
at time n and BM[", denotes the branch metric at time n
associated with a transition from the ¢ th state to the k th
state. Figure 1 illustrates this update. The minimization
at the k th state is carried out for all possible previous
states 41,92, “im.

This update operation is performed in the Add-
Compare-Select (ACS) unit in the Viterbi Algorithm.
Each operation in the ACS unit is carried out in a purely
serial way, thus causing the worst speed bottleneck in the
whole throughput. This is clearly illustrated in Figure 2
for a binary input case. In this diagram, a triangle and
a trapezoid represent a comparator and a multiplexer re-
spectively. The multiplexer chooses either an input at
the top or at the bottom as an output depending on the
middle input at the left side. In the following section, we
propose a new architecture to speed up the ACS unit by
changing the serial ACS unit into a parallel structure.

3 The New Structure: Double-

State

For simplicity, we assume a binary input case (m = 2).
This result can be easily generalized to a multiple input

SM., __.G
' +
BM,, —

M} — 7]
BM,,

Figure 2: The Add-Compare-Select unit for the Viterbi
algorithm

14D trellis 1+D+0-D” trellis
00 00
0 1
0 0 01 01
1 \'
1 /’ 1
1 5 1 10 ‘b 10

1111

Figure 3: Two equivalent trellises

level case. Also, we continue explaining a new structure
in the ML sequence detector case. Applying the same
structure to the ML convolutional decoder is straightfor-
ward.

First, note that the channel response polynomial H (D)
of order N could be written as: H(D) = hg+hD+---+
hyu DV + 0. DNt As an example, Figure 3 illustrates
two equivalent trellises for the 2 state 1 + D channel and
the 4 state 1 + D + 0 - D? channel. The numbers next
to the states represent the input sequence. (For example,
10 of the left hand side state of the 1 + D + 0 - D? trellis
represents an input 1 and 0 at time n — 2 and n — 1
respectively.) Also, the numbers on the arrow line show
the ideal channel output associated with the transition.

For a channel H(D) which has a zero coefficient for
the last coefficient, the branch metrics for two transitions
which have the same ending state are same, because the
two starting states are different in only the oldest bit posi-
tion. In this case, the Viterbi processor has 2V*! states,
even though H(D) is actually a polynomial of order V
(thus the term “double state”). By having the “double
state” in a trellis, the brach metrics ending in one state
are all the same. This means that when choosing the

1665

SM; ——..—@*

BM,=BM, —3¢

n+l

SM
k

o8

Figure 4: A new Add-Compare-Select unit

M,

minimum of two possible state metrics SM*+ BM; ; and
SM J" + BMj), we can select the less of two previous state
metrics SM* and SM} without waiting for an addition
of the branch metrics. (In this case, BM;r = BM,)

Equivalently, we perform the following recursion:
SMPt! = min(SM}) + BMy

For example, in the current state 00 of Figure 3, two
incoming paths from the previous states 00 and 10 have
the same branch metric 0. This applies to all the other
states, since in the double state the oldest input to the
Viterbi processor makes no contribution on computing
the branch metric for each state transitions. Therefore,
in the double state structure, the “Add” operation which
computes the state metric can be carried out at the same
time as the “Compare” operation. This new structure is
shown in Figure 4. As clearly shown in this diagram, two
branch metrics BM; ; and BM; are the same.

A careful investigation of the double state trellis reveals
that a further hardware savings is possible. Looking at
the current states 00 and 01 in Figure 3, they share the
same pair of the previous states 00 and 10. Therefore, if
the current state 00 chooses the path from the previous
state 10 over one from the previous state 00, then the
same decision is made at the “Select” operation for the
current state 01. This is the same for the other pair of
the states 10 and 11. Thus, every two states in the double
state structure can share the same decision making unit
in their “Compare” operation. This can be easily gen-
eralized to an m-ary input case. Combining two states
which share the same previous states in the double state,
the new ACS structure is illustrated in Figure 5. In this
diagram, the state k1 and k2 share the comparator, thus
reduce the hardware complexity. As a result, 2V units of
the ADC shown in Figure 5 are used in the double state
architecture.

At first it appears that the double state trellis in Fig-
ure 3 requires twice as much computation for the state
metric than the ordinary trellis. However, it shall be

- . n+i
BNiI,kl_ BMj,kl SMkl
+
SM;
3
SM;
O
n+1
BM =BM -—{ P SM,,
ik2 k2 :

Figure 5: A combined Add-Compare-Select unit

shown in the following section that there is no redundant
information in the double state trellis. Actually, every
transition shown in the ordinary trellis should be com-
puted, whereas only the half of the transitions shown in
the double state trellis are used for computation.

4 Example and Area-Speed Anal-
ysis

This section shows a simple example explaining that the
double state structure contains no redundancy at all.
Also, area and speed estimate analysis is given.

4.1 Example

Figure 6 compares the ordinary Viterbi algorithm and
the double state in a binary 1 4+ D channel shown in
Figure 3. Here y represents the input sequence to the
Viterbi processor. The branch metric is computed using
the normalized equation —y - §/2 + §2/4 where § shows
the ideal channel output. The thick line and the dashed
lines indicate the survival path and the discarded paths
respectively.

Here in this example, it is readily apparent that the
two representations are exactly the same. Each transi-
tion in the ordinary trellis appears in the double state
trellis. In the ordinary trellis the discarded paths are not
shown conventionally, while in the double state trellis rep-
resentation there is no hidden discarded paths. The only
difference in two trellises is that the decision made in the
double state has one more latency. For example, at time
n = 4, the state 0 in the ordinary trellis chooses a path

1666

1.05 2.05

ordinary
trellis

double-state
trellis

045 0 0.95

-0.775

Figure 6: Example of the double state

with metric -1.3 over one with metric -0.775. In contrast,
the double state trellis makes the same decision at time
n = 5. This extra latency can be, however, corrected by
noting that knowledge of a current sample value is not
necessary to make a decision. A simple correction rule is
described in [6]. Another point to note is that the double
state trellis does not make any decision at the initial stage
(time n = 0) so that transitions shown at time n = 0 can
be arbitrarily made and this first decision is neglected.

4.2 Area-Speed Analysis

Compared to the ordinary Viterbi algorithm, the pro-
posed double state structure requires twice more adders,
state metric registers and multiplexers. Everything else
remains the same including the path memory, since the
number of the surviving paths in the double state trellis
is the same as that in the ordinary trellis. As the adders,
state metric registers and multiplexers are a substantial,
but not a dominant portion of the area of the ordinary
Viterbi processor, the expected area in the double state
implementation is roughly 50% more than the ordinary
implementation. In some applications, the Viterbi proces-
sor comprises of only a small part of the complete chip.
For example, in an 8 state EPR4 Viterbi detector chip [7]
which includes a timing recovery, adaptive equalizer, con-
tinuous time filter, encoder/decoder and servo processing,
the Viterbi detector would take only about 8% of the to-
tal area of the chip, thus the area increase for the double

state approach is only about 4% of the chip area in this
case.

Transistor level simulations of an ACS designed for high
speed operation show that of a clock cycle, about 50%
is used by the add, 25% by the compare operation, 5%
by the multiplexing, and 20% by the register setup and
propagate delays. In the proposed double state structure,
the propagation to the adder can be operated at the same
time as the comparator delay, thus saving 25% of the clock
cycle. Therefore, the speed of the double state should be
33% faster than the ordinary ACS unit.

A comparative synthesis for the 16 state ML sequence
detector with a fixed channel response polynomial H(D)
was made [8] to compare the speed and area estimate
for the proposed architecture and the parallel process ap-
proach. This demonstrated that the “double state” ar-
chitecture provides 30% throughput increase with 32%
additional area over the conventional implementation,
whereas the synthesis based on the parallel processing
yields 58% speed-up with 151% area increase. It was also
noted that for applications where H (D) is programmable
[9], the area increase for the parallel processing technique
is much higher due to the increased complexity in 4-way
adders and comparators.

It should be noted that the proposed double state archi-
tecture can replace the ordinary ACS unit in other fast
architectures [3, 4, 5] and further speed up the Viterbi
processor operation.

1667

5 Conclusions

We have proposed a new ACS unit which breaks the speed
bottleneck in the Viterbi algorithm. By doubling the
states of the ordinary trellis, the serial operation in the
ACS unit is reorganized so that the “Add” and “Com-
pare” operations are carried out at the same time, thus
increasing the speed of the operation cycle. It is pro-
jected that 33% of speed up can be achieved. Especially,
following a “system on a chip” trend, the increased area
becomes negligible compared to the whole chip size.

Compared with the parallel processing technique, the
proposed architecture provides a good trade-off between
speed and area, and is better suited for an area intensive
application.

The use of the proposed double state architecture will
remove the Viterbi processor from the speed bottleneck
path in many communication application VLSI chip de-
signs at a fairly modest cost in area and power dissipation.

Acknowledgment

The authors would like to thank J. Garofalo for provid-
ing simulation results of several Viterbi processor archi-
tectures.

References

[1] A. J. Viterbi, “Error bounds for convolutional codes
and an asymptotically optimum decoding algorithm,”
IEEFE Transactions on Information Theory, vol. IT-
13, pp. 260-269, April 1967.

[2] G. D. Forney, “Maximum-likelihood sequence estima-
tion of digital sequences in the presence of intersym-
bol interference,” IEEE Transactions on Information
Theory, vol. IT-18, pp. 363-378, May 1972.

[3] G. Fettweis and H. Meyr, “Parallel Viterbi algorithm
implementation: Breaking the ACS-bottleneck,”
IEEE Transactions on Communications, vol. COM-
37, pp. 785-790, August 1989.

[4] H. K. Thapar and J. M. Cioffi, “A block processing
method for designing high-speed Viterbi detectors,”
in Proc. of International Conference on Communica-
tions, pp. 1096-1100, 1989.

[5] P. J. Black and T. H. Meng, “A 140Mb/s, 32 state,
radix 4 Viterbi decoder,” IEEE Journal of Solid-state
Circuits, vol. 27, pp. 1877-1885, December 1992.

[6] 1. Lee and J. L. Sonntag, “A new architecture for the
fast Viterbi algorithm,” patent filed, March 1998.

[7] J. Fields and et al, “Design of a high-speed low power
EPR4 read channel chip,” in Proc. of ISSCC, 1996.

(8] J. Garofalo, private communication, Lucent Technolo-
gies, 2000

[9] H. L. Lou, The study and design of a programmable
processor for Viterbi detection. PhD thesis, Stanford
University, Stanford, CA 94305, December 1992.

1668

