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Precoding Designs Based on Minimum Distance for
Two-Way Relaying MIMO Systems with

Physical Network Coding
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Abstract—In this paper, we propose new precoding methods
for two-way multiple input multiple output physical network
coding (PNC) systems which employ the modulo operation. In our
work, the transmit and receive filters are determined to maximize
the minimum distance of the received constellations assuming
global channel state information. The precoding operations are
separately optimized for the multiple access (MA) and the
broadcast stages, and the optimal precoding is obtained by
applying a semidefinite relaxation method. Especially, we prove
that for the system with linear detection the modulo operation
for the PNC achieves optimality with the derived precoding
for the MA stage in terms of the minimum distance. Also,
we present a closed-form solution for the optimal filter designs
for two special cases. For computing solutions, we transform
our max min problem into a simple maximization problem by
imposing additional constraints. Also, we propose a suboptimal
non-iterative precoding scheme whose performance is within 1
dB at a bit error rate (BER) of 10−4 compared to the optimum
iterative method with much reduced complexity. Finally, the
simulation results show that the proposed systems achieve 2-3
dB gains at a BER of 10−4 compared to the optimal amplify-
and-forward systems.

Index Terms—Physical network coding, two-way Relay, mini-
mum distance.

I. INTRODUCTION

OVER the past years, relaying transmission has been a
subject of intense research for extending coverage or

increasing the system capacity [2] [3]. Most relay systems are
assumed to operate in the half-duplex mode where a relay node
(RN) does not transmit and receive signals simultaneously.
Thus, they suffer from a spectral efficiency loss due to the 1
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pre-log factor in one-way systems [3]. In order to overcome
the loss in the one-way system, two-way half-duplex systems
have been proposed in [4] and [5]. Some theoretical results
on the relaying systems have been investigated in [6] and [7].

There are two popular protocols for relaying transmission.
One is amplify-and-forward (AF) [6] [8] [9] where the RN
just amplifies the received signal, and the other is decode-
and-forward (DF) where the RN performs decoding. In two-
way AF systems, two end nodes (EN) simultaneously transmit
their information to the RN at the first time slot, and the
RN broadcasts the mixed information to ENs at the second
time slot. Since each EN knows its own transmitted data, self-
interference in the transmitted signals can be removed from the
received signal. This process is also referred to as analogue
network coding. In contrast, for two-way DF systems, it is
more natural for ENs to transmit their information in different
time slots as in [10] and [11]. Subsequently, the RN encodes
the decoded information with network coding [12], and the
desired information can be extracted by utilizing the network
coding at the ENs.

Recently, denoise-and-forward (DNF) with physical net-
work coding (PNC) for two-way relaying networks was in-
troduced in [13]–[19]. In this protocol, after the ENs transmit
their data simultaneously, the RN just detects the symbols
instead of decoding the information bits. Especially, the RN
employs the PNC which suppresses detection errors caused
by interference of the multiple access (MA) stage. If the RN
jointly decodes the information from both ENs as in DF, the
system performance may suffer from the MA interference as
shown in [13]. In DNF systems, the PNC plays an important
role to overcome the MA interference. Assuming perfect
synchronization for both channels of ENs, we can apply an
efficient PNC scheme based on the modulo operation [14] to
remove the MA interference completely. Alternatively, using
an adaptive PNC design according to instantaneous channel
conditions, the MA interference would be suppressed as shown
in [15].

The combination of the DNF scheme with multiple antennas
has been studied in [20], in which precoding techniques are
proposed when adaptive network coding or a modulo operation
is utilized for the PNC. In [20], the precoding of the ENs was
designed for several different scenarios depending on available
channel state information (CSI). For the case of global CSI
at the RN and the EN, their work first chooses the modulo
operation for PNC, and then the precoding is optimized in
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terms of the minimum distance by using a Lagrange method.
In their work, there are some limitations. First, the system in
[20] employs the modulo operation without any proof of the
optimality for PNC. Also, the number of Lagrange multipliers
increases exponentially with the cardinality of the employed
modulation set. For example, when 16-QAM is used at both
ENs for the scheme in [20], there are more than 65536
Lagrange multipliers to be determined. Thus, it would be
prohibitive to solve the problem at every channel realizations.
In our paper, we attempt to address a solution which can avoid
these problems.

First, we propose a new precoding method for single stream
multiple-input multiple-output (MIMO) systems with a PNC
scheme based on the modulo operation [14]. In our work, we
focus on the minimum distance of the received constellations
which is associated with the symbol error rate (SER) [21]. We
separately optimize the filters for the MA and BC stages to
maximize the respective minimum distance. Then, the transmit
and receive filters of the ENs and the RN are optimized
for the MA and BC stages assuming global CSI. For our
work, we approach the problem by examining an upper bound
of the minimum distance. The precoding can be obtained
to maximize the upper bound by applying a semidefinite
relaxation method [22]. We prove that for the system with
linear detection, the precoding of the MA stage combined with
the modulo operation for PNC is jointly optimal.

In terms of detection at the RN, we consider both maximum
likelihood detection (MLD) and linear detection (LD). For
the LD system, an iterative method is proposed to obtain the
optimal precoding which maximizes the minimum distance.
Also, we derive closed-form precoding methods of the optimal
transmit and receive filters of the LD systems for certain con-
figurations. Especially, in order to find the exact solutions, our
max min problem can be changed into a simple maximization
problem by imposing additional constraints. Also, to reduce
the complexity, a suboptimal non-iterative precoding scheme is
presented. Simulation results show that the performance of the
suboptimal strategy for LD systems is within 1 dB at a bit error
rate (BER) of 10−4 compared to the optimal performance.
Also, the proposed systems achieve 2-3 dB gains at a BER of
10−4 over the optimal AF systems.

Throughout this paper, normal letters represent scalar quan-
tities, boldface letters indicate vectors and boldface uppercase
letters designate matrices. C denotes a set of complex num-
bers, and AH and tr(A) stand for Hermitian and trace of a
matrix A, respectively. Also, a∗ indicates the conjugate of a
complex number a, and || · || is defined by Frobenius norm.
Finally, Ia is denoted as an identity matrix of size a.

II. SYSTEM MODEL

Fig. 1 illustrates a relay system where two ENs A and B are
equipped with NA and NB antennas, respectively, and one RN
has NR antennas. Both ENs exchange the data through the RN
assuming the same modulation level for the data symbols. We
assume that global CSI is available at all nodes. Also, there
is no direct link between the ENs, and both ENs are assumed
to transmit a single stream. Half duplex systems are assumed
where transmission and reception at a certain node must be
carried out in different time slots.
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A A AP xu B B BP xu
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Fig. 1. Schematic diagram of a precoding scheme with PNC

Let us define xi as one of an M -QAM symbol transmitted
by EN i for i = A and B, which consists of the inphase
xiI and quadrature xiQ as xi = xiI + jxiQ (j =

√−1) with
E{|xi|2} = 1. Here, xik for k = I and Q is obtained as
xik = M(sik) where M(·) denotes a

√
M -PAM constellation

mapper, and siI and siQ ∈ {0, 1, ...,√M − 1} indicate the
equally probable information corresponding to the inphase and
quadrature of xi, respectively. Then, xik is calculated as

xik =
2sik − (

√
M − 1)√

2E (1)

where E = (M − 1)/3. For BPSK, xiI is defined as xiI =
2siI − 1 where siI ∈ {0, 1}.

At the MA stage, both symbols at EN A and B are precoded
by the transmit filters uA ∈ CNA×1 and uB ∈ CNB×1

with ||uA||2 = ||uB||2 = 1, respectively, and are transmitted
simultaneously to the RN. Fig. 1 (a) depicts the schematic
diagram for the MA stage where link i indicates the link
between EN i and the RN for i = A and B. Then, the received
signal at the RN is expressed as

yR =
√
PAHAuAxA +

√
PBHBuBxB + zR (2)

where Pi and Hi ∈ CNR×Ni denote the transmitted power
and the channel matrix of link i, respectively, for i = A
and B, and zR ∼ N (0, σ2

RINR) represents the circularly
symmetric complex Gaussian noise. We also assume that the
elements of the channels HA and HB are generated with
an independent and identically distributed (i.i.d.) complex
Gaussian distribution with zero mean and unit variance, whose
magnitudes have a Rayleigh fading distribution.

After receiving the signal from the ENs, the RN first detects
(x̂A, x̂B), and then employs PNC to determine the transmitted
symbol sR from the estimated symbol set (x̂A, x̂B), where sR
is defined as the transmitted data at the RN. For detecting two
symbols (x̂A, x̂B) at the RN, we consider both MLD and LD.
For the MLD, the following operation is utilized.

(x̂A, x̂B)=argmax
xA,xB

||yR−
√
PAHAuAxA−

√
PBHBuBxB||2. (3)
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The detection operation for LD will be described later.
After the detection, the RN generates sRk by the modulo

operation [14] as

sRk = Ck(sAk, sBk) (4)

= (sAk + sBk) mod
√
M for k = I and Q

where Ck(·, ·) indicates the PNC function for inphase or
quadrature, and (·) mod

√
M is defined by the modulo

operation of size
√
M . In (4), the modulo operation separately

computes the inphase and the quadrature. For BPSK, sRI

is given by sRI = CI(sAI , sBI) = (sAI + sBI) mod 2.
Note that the candidate set of (xA, xB) for the detection
(3) is changed as {(sAI , s

′
AI , sBI , s

′
BI)| CI(sAI , sBI) �=

CI(s
′
AI , s

′
BI) or CQ(sAQ, sBQ) �= CQ(s

′
AQ, s

′
BQ)} by the

PNC function.
At the broadcast (BC) stage described in Fig. 1 (b), the RN

broadcasts the determined symbol xR = M(sR) to EN A and
B. Then, the received signals at the ENs can be expressed as

yi =
√
PRH

H
i uRxR + zi for i = A and B

where PR denotes the transmitted power of the RN, zi equals
the i.i.d. Gaussian noise with variance σ2

i , and uR ∈ CNR×1

represents the beamforming vector of the RN with ||uR||2 =
1. For simplicity, we assume reciprocal channels for both
stages (i.e. the channel of the BC stage is equal to the
Hermitian channel of the MA stage).

At EN i, the linear combining vector gi ∈ CNi×1 is
employed with ||gi||2 = 1. Although the LD is suboptimal
in general, it was shown in [23] that the LD approaches the
optimal performance when one stream is transmitted. The
received signal with the receive filter gi is rewritten by

yi =
√
PRg

H
i HH

i uRxR + zi for i = A and B (5)

where yi � gH
i yi and zi � gH

i zi. The filtered noise zi has
σ2
i variance. Then, EN A detects the symbol xR using MLD.

After that, utilizing its own symbol sA, the other EN’s symbol
sB is obtained as

sBk = (sAk + sRk) mod
√
M.

Similarly, EN B can detect the symbol sA.

III. PROPOSED STRATEGIES FOR PNC MIMO SYSTEMS

In this section, we present a method to maximize the
minimum distance subject to individual power constraints
PA ≤ PAC , PB ≤ PBC and PR ≤ PRC where PAC , PBC

and PRC stand for the power constraints of EN A, B and
the RN, respectively. We separately optimize the filters for
the MA and BC stages to maximize the respective minimum
distance. Especially, for the MA stage, we solve the problem
considering the PNC. We start with optimizing the MA stage
for MLD and LD in the following.

A. Optimization of the MA Stage for MLD systems

Here, we design the optimal transmit filter at the MA stage
when the RN employs MLD. It is well-known that in order
to optimize the error performance of the MLD, the minimum
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Fig. 2. Received constellation points (sA, sB) for two way PNC with BPSK

distance should be maximized [24]. The squared minimum
distance of the MA stage is defined as

d2min,MA � min
S

‖
√
PAHAuA

(
δ(sAI , s

′
AI) + jδ(sAQ, s

′
AQ)

)
+
√
PBHBuB

(
δ(sBI , s

′
BI) + jδ(sBQ, s

′
BQ)

)
‖2/σ2

R. (6)

where δ(sik, s
′
ik) � M(sik)−M(s′ik) for i ∈ {A,B,R} and

k ∈ {I,Q}, and S � {(sAI , s
′
AI , sBI , s

′
BI)|CI(sAI , sBI) �=

CI(s
′
AI , s

′
BI) or CQ(sAQ, sBQ) �= CQ(s

′
AQ, s

′
BQ)}. Then,

we consider the following relation [16] about the minimum
distance

d2min,MA ≤ UMA � min

(
||√PAHAuAδmin||2

σ2
R

,

||√PBHBuBδmin||2
σ2
R

)
(7)

where δmin � min |δ(siI , s′iI)| = min |δ(siQ, s′iQ)| for sik �=
s′ik . Equation (7) implies that the minimum distance of the
MA stage cannot be greater than that of link A or B due to
the MA interference.

First, we optimize the transmit filter ui to maximize the
upper bound UMA in (7). Suppose that singular value de-
composition (SVD) of the channel matrices is expressed by
Hi = UiΣiV

H
i (i = A and B) where Ui ∈ CNR×NR and

Vi ∈ CNi×Ni are the left and right singular matrices of Hi,
respectively, and the diagonal terms of Σi ∈ CNR×Ni equal
ordered singular values of Hi. Then, using a beamforming
solution in [25] to maximize ||√PiHiuiδmin||, ui can be
derived as

u†
i = vi1 for i = A and B (8)

where vi1 represents the first column of Vi.
Second, we will show that in the BPSK system d2min,MA

equals the upper bound UMA by utilizing the modulo operation
for the PNC. With BPSK, there are four candidates of the
minimum distance : d21 = ||2√PAHAu

†
A||2/σ2

R for sAI =

sBI = s′BI = 0 and s′AI = 1, d22 = ||2√PBHBu
†
B||2/σ2

R for
sAI = s′AI = sBI = 0 and s′BI = 1, d23 = ||2√PAHAu

†
A +

2
√
PBHBu

†
B||2/σ2

R for sAI = sBI = 0 and s′AI = s′BI = 1,
and d24 = ||2√PAHAu

†
A − 2

√
PBHBu

†
B ||2/σ2

R for sAI =
s′BI = 0 and s′AI = sBI = 1.

Then, when choosing the modulo operation for the PNC,
we have the relations CI(0, 1) = CI(1, 0) and CI(0, 0) =
CI(1, 1). Thus, from these relations and the condition S in (6),
d3 and d4 is excluded in the candidate set of the minimum
distance. As a result, the minimum distance is given by
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min(d21, d
2
2) which is equal to the upper bound UMA in (7).

Note that the minimum distance achieves the maximum upper
bound.

Fig. 2 depicts an example of the received constellation
points for BPSK, where there are four distances among
constellation points. In this figure, it can be shown that the
distances a1 and a2 are determined by the gains of link
A and B assuming no MA interference, respectively, i.e.
a21 = ||√PAHAu

†
Aδmin||2 and a22 = ||√PBHBu

†
Bδmin||2.

Then, the other distances a3 and a4 can be regarded to be
generated by the MA interference. Since a3 becomes the
minimum distance without PNC in this figure, a3 would
dominate the system performance. However, after a3 and a4
are excluded in the candidate set of dmin by the modulo
operation for PNC, a3 and a4 have no effect on the system
performance. Note that the MA interference is removed by
utilizing the modulo operation for PNC in the BPSK system,
so that d2min,MA approaches the upper bound UMA. However,
for higher modulation in the ML system, we do not know
whether there exists the optimal PNC which achieves the
optimum minimum distance. In the following section, we
consider general modulation levels utilizing linear detection
at the RN.

B. Optimization of the MA Stage for LD systems

In this subsection, we derive the optimal transmit and
receive filters for general constellations assuming that the RN
employs LD. In the LD system, the receive filter projects yR

onto one complex dimensional signal by considering that PNC
generates one symbol sR. Denoting the receive filter at the RN
as gR ∈ CNR×1 with ||gR||2 = 1, the received signal in (2)
is rewritten as

yR =
√
PAg

H
RHAuAxA +

√
PBg

H
RHBuBxB + zR (9)

where yR = gH
RyR and zR = gH

R zR.
To simplify the derivation, we define ui = Vif i and

gR = UAtR. Since Ui and Vi are unitary matrices, we will
optimize f i and tR instead of ui and gR without loss of gener-
ality. With these relations, it follows yR =

√
PAt

H
RΣAfAxA+√

PBt
H
RURΣBfBxB + zR, where UR � UH

AUB . Then,
similar to the MLD system, we have the following bound

d2min,MA LD≤UMA,LD�min

(
|√PAt

H
RΣAfAδmin|2
σ2
R

,

|√PBt
H
RURΣBfBδmin|2

σ2
R

)
.(10)

Note that UMA,LD is the same as the minimum of the signal-
to-noise ratio (SNR) with no MA interference.

Next, we maximize the upper bound UMA,LD. We will show
that by adopting the modulo operation for PNC, d2min,MA LD
achieves the maximum UMA,LD. First, we maximize the SNR
in (10) individually. It can be easily checked that we need
PA = PAC and PB = PBC to maximize the SNRs. Applying
the Cauchy-Schwarz inequality, fA and fB which maximize
each SNR can be computed as fA =

ΣH
AtR√

tH
RΣAΣH

AtR

and fB =

ΣH
BU

H

R tR√
tH
RURΣBΣH

BU
H

RtR

, respectively.

Substituting these equations into (10), our problem can be
formulated as

tR = argmax
tR

min(α, β) (11)

s.t. ||tR||2 = 1

where α � tHRΣAΣ
H
A tR and β � PBAt

H
RURΣBΣ

H
BUH

R tR.
Here, PBA represents PBC/PAC . Although this problem is
not concave in general, it can be solved by a semidefinite
relaxation method [22]. Once tR is computed iteratively from
convex optimization based on the relaxation method, we can
also calculate g†

R and u†
i .

From the optimal t†R, the upper bound UMA,LD =
min(PACμ, PBCν)δ

2
min/σ

2
R can be maximized where μ �

t†HR ΣAΣ
H
A t†R and ν � t†HR URΣBΣ

H
BUH

R t†R represent the
squared effective channels for both links. Then, while keeping
the maximum value of UMA,LD, the values of PA and PB are
recomputed as

P †
A = PAC and P †

B =
μ

ν
PAC if PACμ ≤ PBCν (12)

P †
A =

ν

μ
PBC and P †

B = PBC if PACμ > PBCν.

Note that the above expressions maintain the maximum value
of UMA,LD. Also, these conditions make both links have the
equal effective channel (P †

Aμ = P †
Bν), and this equal channel

approach will be useful to show that the modulo operation is
optimal with the derived precoding.

Now, we prove the joint optimality of the modulo operation
together with the above obtained precoding. We have already
known that P†

i , g†
R and u†

i maximize the upper bound of
the minimum distance. Putting these parameters into (9), we
will check the actual minimum distance with PNC. Denoting

the same effective channel in (12) as g =
√
P †
Ag

†H
R HAu

†
A =√

P †
Bg

†H
R HBu

†
B which is the channel gain in (9), the squared

minimum distance in the LD system can be expressed as

d2min,MA LD � min
S

g2

σ2
R

∣∣∣∣δ(sAI , s
′
AI) + jδ(sAQ, s

′
AQ)

+ δ(sBI , s
′
BI) + jδ(sBQ, s

′
BQ)

∣∣∣∣2. (13)

The equation (13) can be constructed by applying the LD
receiver g†

R to (6).
By substituting (1) into (13), it follows

d2min,MA LD = min
S

2g2

Eσ2
R

∣∣∣∣ZI + jZQ

∣∣∣∣2, (14)

where ZI � (sAI + sBI) − (s′AI + s′BI) and ZQ � (sAQ +
sBQ) − (s′AQ + s′BQ). In (14), both ZI and ZQ are integer
numbers from the interval [−(

√
M − 1)

√
M − 1] since we

have sik ∈ {0, 1, · · ·,√M − 1}. Note that if the condition
set S = {(sAI , s

′
AI , sBI , s

′
BI)|CI(sAI , sBI) �= CI(s

′
AI , s

′
BI)

or CQ(sAQ, sBQ) �= CQ(s
′
AQ, s

′
BQ)

}
is not considered in

(14), the minimum distance would be zero. For example,
substituting sAI = sAQ = s′BI = s′BQ = 0 and sBI = sBQ =
s′AI = s′AQ = 1 into ZI and ZQ, it follows ZI = ZQ = 0,
and then, we can check d2min,MA LD = 0 in (14).

Let us employ the modulo operation for PNC to see how
the zero value of the minimum distance is changed. The
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Fig. 3. Received constellation points (sAk, sBk) for two way PNC with
4-PAM

necessary and sufficient condition for zero minimum distance
in (14) is sAI + sBI = s′AI + s′BI and sAQ + sBQ =
s′AQ + s′BQ. This condition leads to both CI(sAI , sBI) =
CI(s

′
AI , s

′
BI) and CQ(sAQ, sBQ) = CQ(s

′
AQ, s

′
BQ) from (4),

which contradicts the condition CI(sAI , sBI) �= CI(s
′
AI , s

′
BI)

or CQ(sAQ, sBQ) �= CQ(s
′
AQ, s

′
BQ) in the minimum distance

function (14).
Thus, employing the modulo operation for PNC, the min-

imum distance can avoid zero minimum distance, so that it
will be greater than the second minimum distance, which
can be easily found as 2g2/Eσ2

R

(
d2min,MA LD ≥ 2g2/Eσ2

R

)
when ZI = 1 and ZQ = 0 in (14). Although we do
not check whether the modulo operation can remove the
second minimum distance or other candidates of the minimum
distance, it is not necessary since it is enough for the proof to
have the relation dmin,MA LD ≥ 2g2/Eσ2

R.
Next, we examine the value of the maximum upper bound

of the minimum distance. Plugging g =
√
P †
Ag

†H
R HAu

†
A =√

P †
Bg

†H
R HBu

†
B into the upper bound in (10), the maximum

value can be expressed as g2δ2min/σ
2
R. Since we have δ2min =

2/E by definition and (1), it follows U †
MA,LD = 2g2/Eσ2

R

which is the same as the lower bound of the minimum dis-
tance. After all, we can conclude that the parameters obtained
to maximize the upper bound of the minimum distance are
optimal when combined with the modulo operation for PNC.

We can check this again in Fig. 3 which describes the
inphase or quadrature of 16QAM. In this figure, some points
are overlapped due to the same effective channel, which
we refer to as co-points hereafter. The modulo operation
design allocates the co-points to the same encoding output,
so that errors caused by these points can be avoided. Also,
all the distances bi become the same maximized values. It
is interesting to note that the obtained maximum value of
the minimum distance is the minimum SNR in (10) with
no MA interference. Thus, we can conclude that the modulo
operation for PNC removes the MA interference completely,
and provides the optimal solution which achieves the upper
bound.

Now, we present detection for the LD system. For the LD
system, the received signal is simply expressed as yR =

g
(
xAI + xBI + j(xAQ + xBQ)

)
+ zR. Considering that

sAk + sBk is necessary for the modulo operation in (4), we

can just detect xRk � xAk + xBk as

x̂Rk = argmax
xRk

|yRk − gxRk|2 for k = I and Q, (15)

where yRI and yRQ represent the real and imaginary parts
of yR, respectively. Then, sAk + sBk can be obtained using
sAk + sBk =

√E/2 x̂Rk +
√
M − 1. Since co-points are

generated by the same effective channel as shown in Fig. 3,
the search size of the LD system becomes 4

√
M − 2.

C. Optimum closed-form solutions for the MA stage with LD
systems

Although an iterative procedure is required to solve (11)
in general, closed form solutions are available for two special
cases, which will be described in this subsection. For these so-
lutions, we will first transform our problem into a new one by
adding one more constraint. Let us define a feasible set of tR
as U = W∪W where W � {tR ∈ CNR×1 | α ≥ β, ||tR||2 =
1} and W � {tR ∈ CNR×1 | α < β, ||tR||2 = 1}. For
tR ∈ W, we denote the maximum value of min(α, β) as Oβ .
Also, for tR ∈ W, Oα is defined as the maximum value. Then,
the problem (11) can be expressed as tR = argmax(Oα, Oβ).
Before solving this, we check two possible solutions. The first
possible solution is the eigenvector corresponding to the max-
imum eigenvalue of URΣBΣ

H
BUH

R , denoted as uR1, which
maximizes β [25]. If uR1 is an element of W (uR1 ∈ W),
Oβ is obtained with tR = uR1. Then, uR1 would be a solution
of (11) since Oβ > Oα in this case.

Next, we can check the second possible solution e1 where
e1 � [1 0 · · · 0]T is the eigenvector corresponding to the
maximum eigenvalue of ΣAΣ

H
A , which maximizes α. Similar

to the first possible solution, if e1 ∈ W, the optimal tR
becomes e1. If no solutions are available (i.e. uR1 /∈ W and
e1 /∈ W), we apply the following theorem.

Theorem 1: Consider a problem which maximizes
min(tHRKAtR, tHRKBtR) for tR ∈ U, where
KA � ΣAΣ

H
A /σ2

A and KB � URΣBΣ
H
BUH

RPBA/σ
2
B

are positive semi-definite (PSD). Let us denote ki as the
eigenvector corresponding to the maximum eigenvalue of
Ki for i = A and B. Then, for the case of kA /∈ W

and kB /∈ W, a solution exists in the reduced set
V � {tR ∈ CNR×1 | α = β, ||tR||2 = 1}.

Proof: See Appendix. �
Based on the result of Theorem 1, we obtain one more

condition tHRKAtR = tHRKBtR. Then, if uR1 /∈ W and e1 /∈
W, another solution of our problem (11) can be expressed as

t†R = argmax
tR

tHRKAtR = argmax
tR

tHRKBtR (16)

s.t. ||tR||2 = 1 and tHR (KA −KB)tR = 0.

Note that the original problem is transformed into a simple one
(16). Then, the algorithm to find the optimal t†R, which we
will refer to as the max-min algorithm is summarized below.

If uR1 ∈ W or e1 ∈ W

t†R =

{
uR1 for uR1 ∈ W

e1 for e1 ∈ W

else
tR is obtained by solving the problem (16).



4156 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 10, OCTOBER 2013

In the max-min algorithm, it can be easily shown that the two
cases uR1 ∈ W and e1 ∈ W do not occur simultaneously.
Once tR is computed from this algorithm, we can also
calculate g†

R and u†
i .

Now, a closed form solution of (16) will be presented for
NR = 2 or rA = rB = 1, where ri stands for the rank of Hi

for i = A and B. In (16), since KA and KB are Hermitian
matrices, KL � KA − KB is also Hermitian. Denoting
eigenvalue decomposition of KL as KL = ULCLU

H
L , we

set tR = ULtR for simple derivations, and then we will find
tR to satisfy (16). With this relation, the problem (16) can be
transformed into

max
tR

t
H
RUH

LKAULtR (17)

s.t. ||tR||2 = 1 and
NR∑
k=1

ck|tk|2 = 0

where tk is the k-th element of tR and ck stands for the k-th
eigenvalue of KL.

1) NR = 2: First, we check existence of a solution. In this
case, from the constraint of (17), it can be shown that the
magnitudes of t1 and t2 are calculated as |t1| =

√
c2

c2−c1
and

|t2| =
√

c1
c1−c2

. If there do not exist solutions
(

i.e., c2
c2−c1

< 0

or c1
c1−c2

< 0
)

, it can be checked that tHRKAtR is always

smaller or always greater than tHRKBtR for all tR. These
cases satisfy uR1 ∈ W or e1 ∈ W in Section III-B. Since the
problem (16) has the conditions uR1 /∈ W and e1 /∈ W, there
exists a solution.

Next, we determine the phase of ti for (17). Since UL and
KA are 2× 2 matrices, the problem can be simplified to

max
tR

t
H
RUH

LKAULtR = max
w1,w2

σ2
A1|w1|2 + σ2

A2|w2|2
σ2
A

(18)

where σik equals the k-th singular value of Hi for i = A and
B, and wj indicates the j-th element of ULtR. Substituting
|w1|2 + |w2|2 = 1 into (18), it follows that the problem is
equivalent to maximizing |w1|2= |uH

L1tR|2 with σ2
A1 ≥ σ2

A2 ≥
0, where uH

L1 is defined as the first row of UL. Denoting u∗
i

as the i-th element of uL1, we have |w1|2 = |u1t1 + u2t2|2.
Then, to maximize |w1|2, we choose the phase of ti as ∠ti=
−∠ui. Finally, the optimal solution of tR for NR=2 can be
calculated by

tR =

[√
c2

c2 − c1
exp(−j∠u1)

√
c1

c1 − c2
exp(−j∠u2)

]T
.

2) rA = 1 and rB = 1: This case encompasses the system
with NR = 1 or NA = NB = 1. First, we will show that
the rank of KL equals two. From rA = rB = 1, KL can be
expressed as

KL =
[
e1 uR1

]⎡⎣ σ2
A1

σ2
A

0

0 −PBAσ2
B1

σ2
B

⎤⎦[ eH1

uH
R1

]
. (19)

Since the channel is independently distributed, e1 and uR1 are
linearly independent. Thus, the rank of KL in (19) is equal to
2. Then, one constraint of (17) is given by c1|t1|2+c2|t2|2 = 0
regardless of NR.

Also, from rA = 1, the cost function in (17) becomes
σ2
A1t

H
RuL1u

H
L1tR/σ

2
A. Similar to the case of NR = 2, ∠ti

is selected as ∠ti = −∠ui. Substituting these phase values
into uH

L1tR, the problem for |ti| is formulated as

max
tR

t
H
RuL1u

H
L1tR (20)

= max
|ti|

NR∑
i=1

|ui||ti|

s.t. ||tR||2 = 1 and c1|t1|2 + c2|t2|2 = 0.

Using a Lagrangian method for this problem, |ti| can be
calculated as

|t1| =
|u1|+

√
− c1

c2
|u2|

λ
(
1− c1

c2

) , |t2| =
√
− c1

c2
|u1| − c1

c2
|u2|

λ
(
1− c1

c2

)
and |ti| = |ui|

λ
for i = 3, 4, · · · , NR

where

λ =

√√√√(|u1|+
√
−c1
c2

|u2|
)2

+

NR∑
i=3

|ui|2.

D. Suboptimal strategies for the MA stage with LD

In the previous subsection, closed-form solutions have been
presented for two special cases. For more general config-
urations, however, the problem (11) or (16) still requires
an iterative process. In this subsection, we propose a non-
iterative suboptimal LD scheme which solves the problem (16)
with reduced complexity. Basically, this suboptimal solution
is assumed to be used with the max-min algorithm.

First, assuming that one link is turned off, we find a solution
for the other link without interference. The optimal solution
for the respective link can easily be obtained by the method
in [25]. A solution for link A, which maximizes KA, is
calculated as t1R,A = e1. Also, t1R,B = uR1 optimizes link B.
To make the best of both links, two solutions can be combined
as

t1R =
t1R,A + t1R,B

||t1R,A + t1R,B||
.

To further improve this combined solution, we consider the
following bound of min(α, β) in (11)

min(α, β) ≤ α+ β

2
,

where the equality holds if and only if α = β. By maximizing
α+β instead of UMA,LD, we have another solution, denoted as
t2R, which is the eigenvector corresponding to the maximum
eigenvalue of KA+KB [25]. Now, a new suboptimal scheme
determines tR by selecting one of the two solutions t1R and
t2R as

t†R = argmax
ti
R

UMA,LD(t
i
R).

Interestingly, it will be shown in the simulation section that
the performance of this simple selection method is quite close
to the optimal LD algorithm in Section III-B.
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a

As Bs

min,MA min minC CB B A Ad a P g P gδ δ= = <

b

As Bs

min,MA min minCB B A Ad b P g P gδ δ= = =

(a) BPSK with full power (b) BPSK with equal channel

Aks Bks

c

min,MA min minC CB B A Ad c P g P gδ δ= < <

(c) 4PAM with full power

Aks Bks

d

min,MA min minCB B A Ad d P g P gδ δ= = =

(d) 4PAM with equal channel

Fig. 4. Minimum distance comparison between the full power and the equal
channel case

E. Discussion on full power strategies for LD systems at the
MA stage

In (12), we have already calculated the transmit power
for the LD system, which maintains the maximum upper
bound UMA,LD, and have shown that the minimum distance
can achieve this maximum value by the modulo operation.
However, it is not full power transmission. In this subsection,
we will show that the full power strategy not only wastes
power in terms of the minimum distance, but also degrades
the performance for high modulation levels.

For simple explanations, we rewrite the equation (9) as

yR =
√
PAgAxA +

√
PBgBxB + zR,

where gA and gB represent the effective channel. Without loss
of generality, we assume

√
PACgA >

√
PBCgB with full

power for BPSK. The minimum distance is a =
√
PBCgBδmin

as shown in Fig. 4 (a). In this figure, the points inside the
dashed circle indicate the clustering made by the modulo
operation. Thus, no error is caused by these points. In Fig. 4
(b), we also depict the received constellation points with the
equal channel case which results from the power allocation
(12). Then, we can check that lower power PA satisfying√
PAgA =

√
PBCgB in Fig. 4 (b) has the same minimum

distance as the full power case with PAC . Thus, we can see
that the full power is not necessary in terms of the minimum
distance for BPSK and QPSK.

Moreover, for high modulation levels, the full power trans-
mission can degrade the performance compared to the equal
channel case. In Figures 4 (c) and (d) which illustrate the
inphase of 16QAM systems, the full power case exhibits
smaller minimum distance than the equal channel case due
to the spread of the points, which results in a performance
loss. Thus, we conclude that it is important to adopt power
control for higher modulation levels. This will be confirmed
later in the simulation section.

F. Optimization of the BC Stage

In the BC stage, the RN transmits the processed signal√
PRuRxR to the ENs simultaneously. Similar to the MA

stage, we consider the squared distance between the constel-
lation points at the ENs defined as

d2BC,i(sR, s
′
R)

= |
√
PRg

H
i HH

i uR(δ(sRI , s
′
RI) + jδ(sRQ, s

′
RQ))|2/σ2

i , (21)

for i = A and B. Then, we define the following minimum
distance which is the most dominant factor for the SER of the
BC stage

d2min,BC � min
(
d2min,BC,A, d2min,BC,B

)
(22)

where d2min,BC,i � min d2BC,i = |√PRg
H
i HH

i uRδmin|2/σ2
i for

i = A and B.
Now, we identify gi and uR which maximize d2min,BC.

Similar to the MA stage of the LD system, we set gi = Viti
and uR = UAfR. Substituting these expressions to (5), the
received signal is obtained as

yA =
√
PRt

H
AΣH

A fRxR + zA

and yB =
√
PRt

H
BΣH

BUH
R fRxR + zB.

Similar to Section III-B, to maximize d2min,BC,A and d2min,BC,B ,

the received vectors are given as tA =
∑H

A fR√
fH

R

∑
A

∑
H
A fR

and

tB =
∑H

B UH

R fR√
fH

RUR

∑
B

∑
H
B UH

R fR

. Then, using these solutions,

(22) can be expressed as

d2min,BC

= PRδ
2
minmin

(
fHRΣAΣ

H
A fR

σ2
A

,
fHRURΣBΣ

H
BUH

R fR
σ2
B

)
. (23)

Interestingly, maximizing d2min,BC is very similar to the pro-
cedure of maxmin(α, β) in Section III-B. Thus, the transmit
filter fR can be solved by the results in Section III-B, III-C
and III-D. In this case, the relay transmits with full power
(PR = PRC ).

IV. SIMULATION RESULTS

In this section, we evaluate the following systems in terms
of the BER: The MLD system, the LD system with an iterative
method (opt-LD), and the suboptimum LD system (sub-LD).
The individual power constraints are applied as PAC = PBC =
PRC = P . Also, the average SNR is defined as P/σ2 with
σ2
A = σ2

B = σ2
R = σ2. We use a notation of NA ×NR ×NB

for representing antenna configurations in this section.
In Fig. 5, we plot the results of the proposed systems

with BPSK for 3 × 3 × 3 relaying networks. First, we can
check in this figure that MLD exhibits the best performance
as expected. It is interesting to note that the performance of
the opt-LD is the same as that of MLD in this configuration.
From this result, we may check that our approach of mapping
into one complex dimension by LD and removing the MA
interference by PNC is effective. Also, it can be checked that
the performance of the sub-LD is within 1 dB at a BER of
10−4 compared to the opt-LD with much lower complexity.
In addition, the performance of two-way AF systems with the
optimal precoding in [9] for one stream is presented, which
require an iterative gradient method. We can see that our
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Fig. 5. BER performance of the 3× 3× 3 two-way relaying networks with
BPSK
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Fig. 6. BER performance of the 3× 3× 3 two-way relaying networks with
QPSK

proposed systems provide 2-3 dB gains at a BER of 10−4 over
conventional two-way AF systems. This performance gain can
be attributed to the fact that the RN of two-way AF adds two
symbols from the ENs as one transmitting signal, while the RN
with PNC encodes one symbol which consumes less power
than the two-way AF case. Also, since the AF systems are
not able to remove the noise at the RN, its power is boosted
when the RN transmits the signal.

Fig. 6 depicts the BER performance of the proposed systems
with QPSK for 3 × 3 × 3 antenna configurations. Note that
MLD solutions are not available for QPSK. Similar to Fig. 5,
the proposed systems achieve 2-3 dB gains at a BER of 10−4

over two-way AF systems. As expected from the analysis in
Section III-E, full power transmission has almost the same
performance as the opt-LD with the equal effective channel.
The slight gap between two systems reflects that the BER may
not be exactly the same, even if these systems have the same
minimum distance.

In Fig. 7, the BERs are exhibited for 3 × 2 × 3 systems.
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Fig. 7. BER performance of the proposed 3 × 2 × 3 two-way relaying
networks with 16QAM
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Fig. 8. Diversity comparison of the proposed suboptimal systems with QPSK

In this figure, the LD systems with a closed-form solution
is referred to as the closed-form LD. It can be shown that
the closed-form LD has the same performance as the optimal
approach, which confirms that our derived solution is correct.
Also, we can check in this figure that the performance of full
power transmission is severely degraded at high SNR due to
the MA interference, as discussed in Section III-E. Thus, it is
important to adopt power control for high modulation levels.
In addition, we can see that the proposed systems have a 3
dB gain compared to the optimal two-way AF systems.

Finally, Fig. 8 evaluates the sub-LD with various antenna
configurations. It can be noted in the plot that although
suboptimal solutions are adopted, our systems achieve a full
diversity order NR min(NA, NB) as shown in [26]. From the
simulation results, it is clear that our proposed systems are
very effective for relaying networks.
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V. CONCLUSION

In this paper, we have considered a design of two way
wireless relaying systems. Assuming the modulo operation as
PNC, we have first proposed iterative methods for the optimal
precoding which maximizes an upper bound in individual
power constraints. We separately optimize the filters for the
MA and BC stages. Then, we have proved that the precoding
of the MA stage is jointly optimal with the modulo operation
method for PNC. Also, for the cases of NR = 2 or rA = rB =
1, we have derived a closed-form solution for the precoding.
To deal with exact solutions, we change our max min problem
into a simple maximizing problem by imposing additional
constraints. Also, to lower the complexity, we have proposed
a simple suboptimal precoding whose performance is within
1 dB compared to the optimal systems. It has been shown
from the simulation results that the proposed systems achieve
2-3 dB gains at a BER of 10−4 over the optimal AF systems.
Also, we have shown that a full power strategy in the system
with individual power constraint degrades the performance.
An extension to the case of non-equal modulation levels is
left for further study.

APPENDIX

PROOF OF THEOREM 1

First, we consider tR ∈ W which maximizes tHRKBtR.
Although tR = kB maximizes tHRKBtR, this cannot be a
solution because of the assumption kB /∈ W. Let us denote

kZ =
tejθkB + (1 − t)kW

|tejθkB + (1 − t)kW |
for kW ∈W, −π ≤ θ ≤ π and 0 ≤ t ≤ 1. Then, defining
M � kH

BKBkB and l � kH
WkB , we have kH

WKBkB = Ml.
From these, kH

Z KBkZ can be expressed as

kH
Z KBkZ=

Mt2 +m(1 − t)2 + 2
[l exp(jθ)]t(1 − t)

(2− 2
[l exp(jθ)])t2 − (2− 2
[l exp(jθ)])t + 1

where m � kH
WKBkW , and 
(·) stands for a real element.

After some mathematical manipulations, the derivative of
kH
Z KBkZ with respect to t is calculated by

d

dt
kH
Z KBkZ

=
−2(M −m){(1−
[lejθ])t+ 
[lejθ]}(t− 1)

{(2− 2
[lejθ])t2 − (2− 2
[lejθ])t+ 1}2 . (24)

In this equation, since the maximum of kH
Z KBkZ is M , and

KB is PSD, it follows M ≥ m ≥ 0. By using this inequality,
(24) is positive for −�[l exp(jθ)]

1−�[l exp(jθ)] ≤ t ≤ 1. Then, it can be

shown that for any θ ∈ Ω � {θ|0 ≤ 
[l exp(jθ)] ≤ 1},
kH
Z KBkZ is a monotonically increasing function of t for 0 ≤

t ≤ 1. This implies that kH
Z KBkZ is larger than kH

WKBkW

for an arbitrary kW ∈ W, since kZ is equal to kW for t = 0.
Next, for an arbitrary kW ∈ W, we check if there exists kZ

in the reduced set V for 0 ≤ t ≤ 1 and θ ∈ Ω. Denoting n1, n2

and n3 as n1 � kH
W (KA−KB)kW , n2 � −kH

B (KA−KB)kB

and n3 � 
[kH
W (KA − KB)kB ], respectively, the equation

kH
Z (KA −KB)kZ = 0 can be expressed as

(n1 − n2 − 2n3)t
2 − 2(n1 − n3)t+ n1 = 0. (25)

One solution for this equation is t† = 1/(1+
√
(n3

n1
)2 + n2−

n3

n1
). Since we have kW ∈ W and kB ∈ W, both n1 and

n2 are non-negative. Then, it follows 0 ≤ t† ≤ 1. It can be
noticed that t† is valid for all θ ∈ Ω. Thus, there exists kZ

which satisfies kH
Z KAkZ = kH

Z KBkZ .
Finally, from the above derivations, for an arbitrary kW ∈

W, there exists kZ in the reduced feasible set kZ ∈ V (i.e.
kH
Z KAkZ = kH

Z KBkZ ), which satisfies that kH
Z KBkZ is

larger than kH
WKBkW . Thus, for tR = kW ∈ W, to maximize

the problem, a solution exists in the reduced set V. For tR ∈
W, we can prove in a similar way.
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