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Beamforming and Power Allocation Designs for
Energy Efficiency Maximization in MISO Distributed Antenna Systems
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Abstract—In this paper, we present a beamforming and power
allocation algorithm for a downlink multiple-input single-output
distributed antenna system which maximizes energy efficiency
(EE). To reduce the computational complexity of conventional
joint optimization approaches relying on an iterative method,
we propose a near optimal scheme based on a closed-form
solution. Employing the decomposition property of the joint
optimization problem, the EE problem is solved in two steps.
First, we determine the beamforming strategy for the EE
maximization exposing the structure of beamforming vectors.
Then, the optimal power allocation is presented as a closed-form
solution by solving Karush-Kuhn-Tucker conditions. Through
numerical simulations, we confirm that the proposed solution
shows the performance almost identical to the jointly optimum
method with much reduced complexity.

Index Terms—Energy efficiency, distributed antenna systems.

I. INTRODUCTION

RECENTLY, green communication, which pursues high
energy efficiency, has drawn increasing attentions for

future wireless communications designs. Energy efficiency
(EE) is defined as the ratio of the sum-rate to the total
power consumption measured in bit/Hz/Joule, and various
energy efficient methods have been proposed for orthogonal
frequency division multiple access [1] and multiple input
multiple output systems [2]. Meanwhile, distributed antenna
systems (DAS) have received considerable interests as a key
technique to meet the increasing needs of spectral efficiency
(SE) and the expanded coverage [3]. Unlike conventional
antenna systems (CAS) with co-located antennas [3], the DAS
have distributed antenna (DA) ports throughout a cell which
are geographically separated and physically connected with
each other by dedicated channels. Thus, the DAS exhibits
benefits on power savings and the enhanced system capacity
which results from the reduced transmit power and co-channel
interference.

Lately, several efforts have been devoted to examine the
DAS such as a design of antenna locations [4] and the SE
analysis [5] [6]. Especially in [6], the ergodic capacity and the
optimal beamforming were studied where each DA port has
multiple antennas with per-DA port power constraint. From
an EE point of view, however, most research has focused on
the DAS where DA ports and users are equipped with a single
antenna, and treated power allocation schemes in [7] and [8].
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This paper extends the work in [8] to a more general DAS
where each DA port has multiple antennas by considering
both the beamforming and the power control strategies. To
the best of authors’ knowledge, there is no reported work
on a closed form expression of the beamforming and the
power control design for the EE maximization in multiple-
input single-output (MISO) DAS. Unlike conventional optimal
design approach utilizing an iterative method [1], we propose
a near optimal closed-form solution which provides an useful
insight. To this end, we utilize the decomposition property of
the joint optimization problem, and thereby the EE problem
is solved in two steps. First we determine the beamforming
design revealing a structure of the beamforming vectors. Then,
we derive a closed-form solution for the EE maximizing power
allocation problem by solving Karush-Kuhn-Tucker (KKT)
conditions and present a simple power allocation scheme based
on the obtained expression. Although our scheme does not
ensure the optimality, numerical results demonstrate that we
can achieve the performance very close to the jointly optimal
solution with much reduced complexity.

Throughout this paper, we adopt lowercase boldface for
vectors. The superscripts (·)H and ‖ · ‖ stand for conjugate
transpose and Euclidean 2-norm of a vector, respectively.

II. SYSTEM MODEL

We consider a downlink single cell DAS where N DA ports
with Mi antennas (i = 1, . . . , N) support a single antenna
user. We assume that all DA ports are physically connected
with each other via fiber links. Moreover, it is assumed that
all DA ports and the user know channel state information
perfectly, and power allocation is centrally controlled. Then,
the received signal for the user is written as

y =

N∑
i=1

√
pig

H
i wis+ z

where pi is the transmit power consumed by the i-th DA port,
wi is defined as the beamforming column vector of length Mi

for the i-th DA port with unit norm (‖wi‖2 = 1), s stands for
the transmitted signal with zero mean and unit variance, and
z equals the additive white Gaussian noise with zero mean
and variance σ2

n. Here, we represent gi = d
−α

2

i hi as the
Mi × 1 channel vector between the i-th DA port and the user
where d

−α
2

i denotes the propagation pathloss with the pathloss
exponent α due to the distance di between the i-th DA port
and the user, and hi indicates the channel column vector for
small scale fadings.

As a result, the achievable rate for the user is given as

R = log2

(
1 +

∣∣∣∑N
i=1

√
pig

H
i wi

∣∣∣2
σ2
n

)
.
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It is assumed that per-DA port power constraint is applied
as pi ≤ Pmax, where Pmax is the maximum transmit power
available at each DA port. Then, the EE for DAS with N DA

ports is defined as ηEE =
R∑N

i=1 pi + pc
where pc indicates

the circuit power. The total power consumption for DAS
includes the power consumption of power amplifiers at each
DA port pi for i = 1, . . . , N , and that of all other circuit
blocks pc, which encompasses the power consumed by digital
signal processors, frequency synthesizers, mixers, etc. Here,
we assume that pc is a fixed constant.

III. JOINT BEAMFORMING AND POWER ALLOCATION FOR

EE MAXIMIZATION

In this section, we first formulate joint beamforming and
power allocation for EE maximization in DAS with per-DA
port power constraint. The EE maximizing beamforming and
power allocation problem is expressed as

max
pi,wi,∀i

ln

(
1 + 1

σ2
n

∣∣∣∑N
i=1

√
pig

H
i wi

∣∣∣2)∑N
i=1 pi + pc

(1)

subject to pi ≤ Pmax, ‖wi‖2 = 1 for i = 1, · · · , N.

In general, it is very difficult to obtain an explicit solu-
tion for this joint optimization problem since it is strictly
non-convex. Instead, most previous works have adopted an
alternating optimization method which iteratively identifies a
local optimum solution. Although such methods may success-
fully maximize the EE, they result in high implementation
complexity and hardly provide helpful insights. In order to
derive an efficient optimization algorithm, we divide the joint
optimization problem (1) into two individual optimization
problems: beamforming and power allocation. The details will
be given in the following subsections.

A. Beamforming Design

First, we introduce useful lemmas below to design the
beamforming vectors wi’s.

Lemma 1: For given pi’s, the optimal beamforming solu-
tion for the EE maximization is identical to that of the SE
maximization.

Proof: With fixed pi’s, the denominator of the EE metric
in (1) can be treated as a constant, which means that the EE
maximization problem is equivalent to the SE maximization
with respect to wi’s.

Lemma 2: For a single user MISO DAS, the optimal
beamforming strategy for the SE maximization is distributed
maximum ratio transmission (D-MRT) with any given pi’s
which is expressed as w�

i =
gi‖gi‖ for i = 1, · · · , N .

Proof: See [6].
Different from conventional iterative algorithms which opti-

mize pi’s and wi’s alternately after fixing each parameter [9],
in our case, wi’s are set to gi‖gi‖ regardless of the value of

pi’s for i = 1, · · · , N , and thus we do not need to update wi’s
because of Lemmas 1 and 2. Motivated by these observations,
the beamforming wi is determined as the D-MRT for the EE
maximization of MISO DAS. As will be shown later, although

this beamforming strategy may be suboptimum, almost the
same performance is achieved compared to the conventional
optimal approach.

B. Power Allocation

To investigate the efficient optimal power allocation method
with the beamforming vectors wi =

gi‖gi‖ for all i, we

reformulate the problem (1) as

max
pi,∀i

g({pi}) (2)

subject to pi ≤ Pmax for i = 1, · · · , N

where g({pi}) is defined as
ln
(
1 + 1

σ2
n

(∑N
i=1

√
piγi

)2)
∑N

i=1 pi + pc
,

and γi equals d
−α

2

i ‖hi‖.
Without loss of generality, we assume that all γi’s are sorted

in descending order as γ1 > γ2 > · · · > γN . Then, the
Lagrangian function for the EE maximizing power allocation
problem is written by

L({pi, λi, νi}) =
ln
(
1+ 1

σ2
n

(∑N
i=1

√
piγi
)2)

∑N
i=1pi+pc

+

N∑
j=1

λjpj+

N∑
j=1

νj(Pmax−pj),

where λi and νi are the Lagrange multipliers chosen to meet
the conditions of pi ≥ 0 and pi ≤ Pmax for i = 1, . . . , N .

According to the KKT conditions [10], the optimal values
{p�i , λ�

i , ν
�
i } (i = 1, . . . , N ) should satisfy the following

equations:
∂L

∂pi
= fi(p

�
1, . . . , p

�
N) + λ�

i − ν�i = 0 (3)

0 ≤ p�i ≤ Pmax, λ�
i ≥ 0, ν�i ≥ 0

λ�
i p

�
i = ν�i (Pmax − p�i ) = 0 for i = 1, · · · , N (4)

where
fi(p

�
1, . . . , p

�
N)=

1

(
∑N

j=1 p
�
j+pc)2

· (5)

⎛
⎝γi(∑N

j=1

√
p�jγj)(

∑N
j=1 p

�
j+pc)√

p�i

(
σ2
n+(

∑N
j=1

√
p�jγj)

2
) −ln

(
1+

(
∑N

j=1

√
p�jγj)

2

σ2
n

)⎞⎠ .

For simplicity, we drop the arguments p�i ’s from
fi(p

�
1, . . . , p

�
N ) from now on.

Next, we derive a power allocation solution which maxi-
mizes the EE for DAS with D-MRT. Based on the comple-
mentary slackness condition in (4), a possible set of solutions
for the power pi of the i-th DA port can be divided into three
mutually exclusive cases as

(p�i ,λ
�
i ,ν

�
1 )∈

{
(0,λ�

i ,0), (x
�
i ,0,0) |0<x�

i<Pmax, (Pmax,0,ν
�
i)
}
. (6)

Before further derivations, we first introduce the following
Lemmas.

Lemma 3: The optimal power of the i-th DA port p�i is
always non-zero.

Proof: In order to have p�i = 0, we need νi = 0 from
(4), and it follows fi = −λ�

i +ν�i ≤ 0 for i=1,. . . ,N . With
p�i=0, however, fi in (5) becomes infinity, which contradicts
the KKT conditions. Thus, p�i>0 should be satisfied for ∀i.

Lemma 4: For any i and j, if the optimal power of the i-
th DA port p�i is less than Pmax, the power for the j-th DA
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ports having worse SNR than the i-th DA port is determined

as p�j =
γ2
j

γ2
i
p�i for j > i.

Proof: From (3) and (4), it is clear that fj=0 if p�j<Pmax,
or fj ≥ 0 otherwise. So, to have p�j = Pmax for j > i when

p�i is less than Pmax,
√

p�
j

p�
i
≤ γj

γi
should be fulfilled since fk’s

are proportional to γk√
p�
k

based on (5). However, for j > i, this

condition cannot be satisfied since we have γi > γj and thus
fj should be zero, which is equivalent to p�j < Pmax. Then,
combining (5) and the relation fi = fi+1 = · · · = fN = 0, it

follows p�j =
γ2
j

γ2
i
p�i for j > i when p�i < Pmax.

Let us consider the power p1 of the first DA port which
has the largest γi. For the first case (p�1, λ

�
1, ν

�
i ) = (0, λ�

i , 0),
from Lemma 3, we can figure out that the optimal solution
for the first case with p�1 = 0 never occurs. For the same
reason, the case having p�i = 0 cannot be a solution for the
EE maximizing power allocation for MISO DAS.

Next, we examine the case (p�1,λ
�
1,ν

�
i)=(x�

1,0,0) |0<x�
1<Pmax .

To obtain a closed-form solution {x�
i } based on the zero-

gradient conditions, we insert x�
j =

γ2
j

γ2
1
x�
1 (j = 2, 3, · · · , N)

into f1 in (5) based on Lemma 4. After some mathematical
manipulations, a closed-form expression for the optimal power
of DA ports is computed as

x�
i=

γ2
i

γ4
1

·
exp
{
ω
(

1
eσ2

n

(
γ2
1pc
(
1 +

γ2
2

γ2
1

)−σ2
n

))
+1+lnσ2

n

}
−σ2

n(
1 +

γ2
2

γ2
1

)2 (7)

where ω(·) denotes the principal branch of the Lambert ω
function defined as the inverse function of f(x) = xex.

Here, it should be noted that if x�
1 computed in (7) exceeds

Pmax, p�1 should be set to Pmax, and we need to further
investigate the optimal value of p�2 according to λ2 and ν2
after fixing p�1 = Pmax, since the power for the rest of
DA ports has not been decided. Now, we know that the
optimal power for the second DA port becomes either x�

2 or
Pmax for 0<x�

2<Pmax, and we get p�2 with p�1 = Pmax.
For the case (p�2, λ

�
2, ν

�
2 ) = (x�

2, 0, 0) |0<x�
2<Pmax , we have

f1 = −λ�
1 + ν�1 > 0 and f2 = −λ�

2 + ν�2 = 0, and the

power of the rest DA ports are determined as p�j =
γ2
j

γ2
2
p�2

for j = 3, 4, · · · , N from Lemma 4. Also, combining the
relation f1 > f2 and (5) yields γ1√

Pmax
> γ2√

x�
2

, and thus

x�
2 is lower bounded by γ2

2

γ2
1
Pmax. Since it is very hard to

compute a closed-form solution x�
2 based on the zero-gradient

condition by equating f2 to zero with p�1 = Pmax, we acquire
x�
2 by examining the characteristics of the objective function

g(Pmax, x2, · · · , xN ) where xj =
γ2
j

γ2
2
x2 for j = 2, 3, · · · , N .

For simple explanations, with given i0 and x, we define
P(i0, x) as the set for the power of N DA ports where the

j-th element is set to
γ2
j

γ2
i0

x if j ≥ i0, or Pmax otherwise for

j=1,2,· · · ,N . Then, g(Pmax,x2,· · · ,xN) with xj=
γ2
j

γ2
2
x2 (j=

2,3,· · · ,N) can be simply expressed as g(P(2,x2)). For i =
2, 3, · · · , N , since the objective function g(P(i, xi)) is strictly
pseudo-concave as well as quasi-concave with respect to xi,
the following properties hold.

• Property 1: x�
i which satisfies fi(P(i,x�

i))=0 is a unique
globally optimal point, if a feasible x�

i exists.

TABLE I
SIMULATION PARAMETERS

Noise power σ2
n -104 dBm

Cell radius R 1000 m
Pathloss exponent α 4

User distribution Uniform
DA port deployment Circular layout

Circuit power pc 1 W
Number of channel realizations 3000

• Property 2: g(P(i,x�
i )) monotonically increases with

respect to xi with fi(P(i,x�
i))> 0 for xi < x�

i , while it
monotonically decreases with fi(P(i,x�

i))<0 for xi>x�
i .

Based on Property 2, if a solution based on the zero-
gradient condition x�

2 exists, f2(P(2,γ
2
2

γ2
1
Pmax)) ·f2(P(2,Pmax))

is negative due to the pseudo-concavity of g(P(2,x�
2)), and for

this case, x�
2 on the feasible open set

(
γ2
2

γ2
1
Pmax, Pmax

)
can be

found efficiently using a bisection method. Otherwise, when
f2(P(2,γ

2
2

γ2
1
Pmax))·f2(P(2,Pmax))>0, g(P(2, x�

2)) monotonically
increases in the feasible region of x2, and thus the optimal
power allocation is determined as p�1 = p�2 = Pmax while p�i
has not been determined yet for i=3,4,· · ·,N . In a similar way,
we can obtain solutions for the remaining DA ports and the
overall algorithm is summarized in Algorithm 1.

Algorithm 1 Optimal power allocation method with D-MRT
Assume γ1 > γ2 > · · · > γN .
Initialize i = 1 and compute (x�

1, x
�
2, · · · , p�N ) using (7).

If x�
1 < Pmax

(p�1, p
�
2, · · · , p�N ) = (x�

1, x
�
2, · · · , x�

N )
else

Set p�1 = Pmax.
While (p∗i = Pmax,i and i ≤ N )

Set i = i+ 1
If fi(P(i,

γ2
i

γ2
i−1

Pmax)) · fi(P(i, Pmax)) > 0

Set p�i = Pmax.
else

Obtain x�
i using a bisection method and set

(p�1, p
�
2, · · · , p�N) = (P(i, x�

i )).
end

end
end

Note that this simple algorithm is applicable to DAS regard-
less of the number of DA ports N and the number of antennas
per DA port Mi. It should be emphasized that the derived
solution becomes globally optimal from a power allocation
perspective with a given D-MRT beamforming. Although the
joint optimality is not guaranteed with respect to pi’s and
wi’s, numerical results in Section IV demonstrate that the
proposed method shows negligible performance loss compared
to the optimum solution obtained by the conventional iterative
scheme in [1].

IV. SIMULATION RESULTS

In this section, we present the performance of the proposed
beamforming and power control method through Monte Carlo
simulations. The system parameters used in the simulations are
listed in Table I. For conveniences, we assume Mi = M for
∀i throughout the simulations. For the DAS with N DA ports,
the j-th DA port is located at

(
r cos 2π(j−1)

N , r sin 2π(j−1)
N

)
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Fig. 1. Energy efficiency with N = 2.

Fig. 2. Energy efficiency with different N .

for j = 1, · · · , N with r =
√

3
7R as in [3]. To confirm the

performance of our proposed scheme, we compare the EE of
the following schemes:

• Optimum power w/ D-MRT: The solution for the optimal
power allocation is obtained by examining all possi-
ble power allocation combinations with a resolution of
0.01 W after applying D-MRT to DAS.

• Joint optimization: The joint optimal solution of a beam-
forming and power allocation is found by the iterative
Dinkelbach method described in [1].

In Figure 1, we plot the EE as a function of Pmax for
DAS with a different number of antennas per DA port. The
EE performance of our scheme gradually improves and is
saturated as Pmax increases. This is due to the fact that x�

1

becomes smaller than Pmax as Pmax grows, and thus p�i ’s
do not change any more. Moreover, the proposed scheme
exhibits the performance identical to the optimum power with
D-MRT and the joint optimization with significantly reduced
complexity. This is quite interesting considering that our
proposed scheme does not jointly optimize the beamforming
and power allocation. Note that our simple scheme is based on
a closed-form expression, while the joint optimization finds a
solution iteratively requiring the convex optimization tools at
each iteration.

Figure 2 depicts the EE performance of beamforming and
power allocation methods for MISO DAS in terms of N with
Pmax = 2 W. It is shown that we can achieve higher EE
as N increases since DAS reduce the transmit power along
with the access distance using geographically separated DA
ports. Through these numerical experiments, we conjecture the

optimality of our proposed beamforming and power allocation
scheme, and the rigorous proof of the joint optimality remains
as an interesting future work.
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