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Joint Transceiver Designs for MSE Minimization
in MIMO Wireless Powered Sensor Networks
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Abstract— In this paper, we study vector parameter estima-
tion in multiple-input multiple-output wireless-powered sensor
networks (WPSNs) where sensor nodes operate by harvesting
the radio frequency signals transmitted from energy access
points (E-APs). We investigate a joint design of sensor data pre-
coders, a fusion rule, and energy covariance matrices to minimize
the mean square error (MSE) of the parameter estimate based
on a non-linear energy harvesting model. First, we propose a cen-
tralized algorithm to solve the MSE minimization problem. Next,
to reduce the computational complexity at the fusion center (FC)
and feedback overhead from the sensors to the FC, we present a
distributed algorithm to locally compute the precoders and the
energy covariance matrices. We employ the alternating direction
method of multipliers technique to minimize the MSE in a
distributed manner without any coordination from the FC. In the
proposed distributed algorithm, each sensor node calculates its
own precoders and determines the local information of the fusion
rule, and then messages are broadcast to other sensor nodes and
E-APs. Simulation results demonstrate that the distributed algo-
rithm performs close to the centralized algorithm with reduced
complexity. Moreover, the proposed methods exhibit superior
estimation performance over conventional techniques in WPSNs.

Index Terms— Distributed estimation, energy harvesting,
precoding, wireless power transfer, wireless sensor network.

I. INTRODUCTION

W IRELESS sensor networks (WSN) consisting of dis-
tributed nodes are deployed in an environment for

sensing, collecting information, and actuation. They are found
in many applications such as surveillance, environmental mon-
itoring, and automation [1]. An important use of the WSNs is
to estimate a parameter of interest at a fusion center (FC) using
the data received from multiple sensor nodes, which observe
the source.

To enhance the estimation accuracy, the observations at the
sensor nodes can be processed before transmitting them to
the FC over the multiple access channel (MAC). Thus, the
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data transmission and the fusion of the data received from
multiple sensors, which is termed as the fusion rule, can be
intelligently designed to minimize the estimation error. This
problem has been well researched in [2]–[5] and references
therein. However, one of the major shortcomings of the WSNs
is that the network lifetime is often short, since replacing
batteries for the sensor nodes is expensive and the nodes may
be inaccessible [6].

With the advent of wireless energy transfer (WET)
technologies [7], a dedicated energy access point (E-AP) can
remotely recharge the sensor nodes by transmitting radio
frequency (RF) signals and prolong the lifetime of the WSN.
The RF based WET is ideally suited for WSNs, since it can
concurrently power a large number of sensors and also transmit
information. In contrast, magnetic resonance and inductive
coupling based WET methods suffer from short charging
distances and a large form factor [8]. Further, the energy effi-
ciency of the RF based WET can be enhanced by employing
multiple-input multiple-output (MIMO) techniques to control
the direction of the energy beams [9].

In wireless powered sensor networks (WPSN), the sensor
nodes first harvest the energy of the RF signals from E-APs,
and then utilize the collected energy for transmitting the data to
the FC for parameter estimation. However, a rapid attenuation
of RF waves with respect to the transmission distance reduces
the energy transfer efficiency. Further, due to uneven deploy-
ment, energy harvested by the sensors vary drastically among
the sensors and may be insufficient to sustain the operation
at many sensors. Therefore, for the WPSN, in addition to the
sensor processing and the fusion rule, an energy transmission
strategy plays an important role in maximizing the network
performance. Hence, designing the energy transmitting and
harvesting policy for WSNs has attracted significant research
interests recently [10]–[12].

Distributed energy beamforming with multiple chargers to
maximize the transferred power was proposed in [13] and
fairness-based energy beamforming to maximize the minimum
energy harvested in the network was investigated in [14].
A joint design of energy beamformers and charging time was
introduced to maximize the minimum throughput of users
in [15] and the sum-rate in [16]. Developing on these results,
the work in [12] studied the probability that the received
power at the sensors exceeds a threshold. In [17], the authors
presented the optimal power allocation to maximize the sum-
throughput in a cooperative WSN where relays harvest energy
by utilizing the signal from the sensor nodes. Similarly, [18]
investigated energy beamforming and power allocation for
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the sensor nodes to maximize the received signal-to-noise
ratio (SNR) at the FC. However, these works do not study
a joint design of the WPSN for parameter estimation.

Power allocation between data acquisition and data trans-
mission was examined in [19] for a WPSN that employs zero-
forcing precoding for estimation. The authors in [20] proposed
the optimal power transmission from the chargers and the
optimal allocation of the harvested power for information
transmission and local sensing at the sensor. Power allocation
and energy beamforming were determined in [21] to minimize
the mean square error (MSE) of the estimate at a FC for single
antenna sensors. In [22], the optimal energy management when
sensor nodes share energy was considered for the sub-optimal
best linear unbiased estimator at the FC. Also, power alloca-
tion was introduced in [23] to minimize the MSE assuming
chargers with a finite number of fixed energy-beam patterns.
All these works were limited to scalar parameter estimation
in a single-input single-output (SISO) WPSN and did not
explicitly derive the energy transmit beamformers.

Moreover, all the existing works assume that a central coor-
dinating entity such as a FC computes the precoders and the
energy-beam directions, and forwards them to the sensor nodes
and the E-APs. Also, they adopted a simple linear energy
harvesting (EH) receiver model for power conversion. It has
been shown that in practice, the EH circuits exhibit non-linear
characteristics and a system design based on the conventional
linear EH model may lead to inefficient utilization of the
energy resources [24], [25].

In this paper, we consider vector parameter estimation
in a general MIMO multi-sensor WPSN with a non-linear
energy harvesting model. We investigate joint optimization
of sensor data precoders, energy covariance matrices, and the
fusion rule to minimize the MSE of the parameter estimate
subject to power constraint at the E-APs. First, we propose
a centralized algorithm in which the FC solves the MSE
minimization problem. Since the optimal minimum mean
square error (MMSE) estimation of vector parameters leads
to a non-convex optimization problem, we employ an iterative
alternating minimization algorithm to determine the optimal
precoders, the energy covariance matrices, and the fusion rule.

However, the FC requires the knowledge of channel state
information (CSI) among all the nodes. In addition, the compu-
tational complexity of the centralized algorithm scales with the
number of sensors. To overcome these problems, we present a
distributed algorithm based on the alternating direction method
of multipliers (ADMM) technique to obtain the optimal pre-
coders at each sensor node and the energy covariance matrices
at the E-APs.

The distributed algorithm only requires the sensor nodes
to broadcast local messages to other sensor nodes and the
dual price updates to the E-APs instead of sharing the actual
CSI and the observation statistical information to the FC.
The proposed algorithm has low computational complexity
independent of the number of sensors. Besides, we derive
closed form expressions to calculate a solution.

Moreover, each sensor node computes the optimal MMSE
fusion rule locally that can be fed back to the FC for
parameter estimation. This relieves the FC from acquiring

Fig. 1. System model of a WPSN.

CSI and all the local observation statistical information and
evaluating the optimal fusion rule. This significantly decreases
the feedback overhead from sensor nodes to the FC. Simu-
lation results demonstrate that the proposed methods exhibit
superior estimation performance over conventional techniques
for parameter estimation in WPSNs. Also, we show that the
proposed distributed algorithm performs close to the central-
ized technique while requiring low computational resources.

This paper is organized as follows: Section II describes
the system model and formulates the parameter estimation
problem in WPSN. In Section III, we present the centralized
algorithm to optimize a WPSN. Section IV proposes the
distributed algorithm to solve the MSE minimization prob-
lem. Simulation results are illustrated in Section V and the
conclusions are summarized in Section VI.

The following notations are used throughout the paper. The
operators (·)T , (·)H , and tr(·) denote transpose, Hermitian, and
trace of a matrix, respectively. ‖ · ‖ and ‖ · ‖F indicate the L2

norm and the Frobenius norm, respectively. Re(·) represents
the real part of a complex number. In defines an identity matrix
of dimension n and ⊗ stands for the Kronecker product. The
operator vec(A) forms a column vector from a matrix A =
[a1, . . . ,an] by stacking the column vectors ai and ivec(a, m)
rearranges the vector a ∈ Cmn×1 into a matrix with m rows
and n columns.

II. SYSTEM MODEL

We consider a MIMO WPSN comprising a FC with NF

antennas and L sensor nodes with NS antennas as shown
in Fig. 1. This network operates by harvesting energy from the
RF signals emitted by K E-APs with NE antennas each. The
harvested energy is then utilized to transmit the sensor obser-
vations to the FC. During the WET phase, the jth E-AP
broadcasts the energy signal sj ∈ CNE×1 with covariance
matrix Σj ∈ CNE×NE . The transmit power at the jth E-AP
is limited to tr(Σj) ≤ PT,j for j = 1, 2, . . . , K .

Let us denote the channel matrix between the ith sensor
node and the jth E-AP by Gij ∈ C

NS×NE . The total received
RF power at the ith sensor node is given by

PR,i = E

[∥∥∥
∑K

j=1
Gijsj

∥∥∥
2

F

]
=
∑K

j=1
tr
(
GijΣjGH

ij

)
. (1)
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For simple analysis, the total harvested power at the ith
sensor node is often modeled as P lin

H,i = ηiPR,i, where ηi is
the energy harvesting efficiency. However, experimental results
have shown that the EH circuits follow non-linear charac-
teristics in practice [26]. Therefore, we adopt a non-linear
parametric model for energy harvesting in the WPSN [24].
Adopting the model presented in [24], the harvested power at
the ith node is expressed as

PH,i =
Mi

1 − Ωi

(
1

1 + exp [−ai(PR,i − bi)]
− Ωi

)
, (2)

where Ωi is defined as Ωi = 1/(1 + exp(aibi)), ai and bi are
obtained using a curve fitting algorithm from measurement
results of the EH circuit, and Mi denotes the maximum
harvested power by the sensor when the EH circuit is saturated.

The sensor nodes measure the parameter of interest
θ ∈ C

Mθ×1 ∼ CN (0,Rθ) with covariance matrix Rθ. The
observations mi ∈ CM×1 at the ith node can be written using
the linear observation model as

mi = Aiθ + ni, (3)

where Ai ∈ C
M×Mθ represents the observation matrix and

ni ∈ CM×1 indicates the zero mean Gaussian observation
noise uncorrelated at different sensors with covariance matrix
E[ninH

i ]=Ri.
We assume that the sensors transmit linearly precoded

observations to the FC over a MAC [2]. Defining Bi ∈
CNS×M as the precoding matrix at sensor node i, the received
signal yFC({Bi}L

i=1) ∈ CNF ×1 at the FC can be expressed as

yFC({Bi}L
i=1) =

L∑
i=1

HiBimi + nFC

=
L∑

i=1

HiBiAiθ +
L∑

i=1

HiBini + nFC, (4)

where Hi ∈ CNF ×NS is the channel matrix between the
ith node and the FC and nFC ∈ C

NF×1 equals the noise at
the FC distributed as CN (0,RFC).

The energy available at the ith sensor for information
transmission is limited by

τPC,i + τIE
[‖Bimi‖2

]

= τPC,i + τI tr(Bi(AiRθAH
i + Ri)BH

i ) ≤ τEαiPH,i, (5)

where PC,i refers to the circuit power consumption for sensor
operations, αi indicates the fraction of the harvested energy
available for data transmission, τI and τE represent the time
duration for information transmission and energy harvesting,
respectively, and τ = τI + τE .

Then, the FC estimates the parameter θ employing the
received data yFC({Bi}L

i=1) and the fusion rule W ∈
CNF ×Mθ as θ̂ = WHyFC({Bi}L

i=1). In a WPSN for the
parameter estimation, the main objective is to determine
the precoders {Bi}L

i=1, the fusion rule W, and the energy
covariance matrices {Σj}K

j=1 that minimize the MSE of

the estimate. This problem can be modeled as

min
{Bi},{Σj},W

E[‖θ − WHyFC({Bi}L
i=1)‖2]

s. t. τPC,i + τI tr(Bi(AiRθAH
i + Ri)BH

i )
≤ τEαiPH,i({Σj}), i = 1, . . . , L,

tr(Σj) ≤ PT,j , and Σj � 0, j = 1, . . . , K. (6)

In the subsequent sections, we derive centralized and distrib-
uted algorithms to solve the above problem.

III. CENTRALIZED ALGORITHM FOR MSE MINIMIZATION

Substituting yFC({Bi}L
i=1) from (4), the MSE E[‖θ −

WHyFC({Bi}L
i=1)‖2] can be written as

EC({Bi}L
i=1,W)

= tr

(
WH

( L∑
i=1

HiBiAi

)
Rθ

( L∑
i=1

HiBiAi

)H

W

−WH
( L∑

i=1

HiBiAi

)
Rθ − Rθ

( L∑
i=1

HiBiAi

)H

W

+
L∑

i=1

WHHiBiRiBH
i HH

i W + WHRFCW + Rθ

)
.

(7)

As EC({Bi}L
i=1,W) is non-convex in terms of {Bi} and W,

the problem in (6) is non-convex and difficult to solve.
However, it can be divided into two convex sub-problems
where W and {{Bi}L

i=1, {Σj}K
j=1} are alternately optimized.

For a given {Bi}L
i=1, finding the derivative of the MSE in (7)

with respect to W and equating it to zero yields the optimal
fusion rule as

W� = argmin
W

EC(W|{Bi})

=
(( L∑

i=1

HiBiAi

)
Rθ

( L∑
i=1

HiBiAi

)H

+ RT

)−1

×
( L∑

i=1

HiBiAi

)
Rθ, (8)

where RT =
∑L

i=1 HiBiRiBH
i HH

i + RFC is the total noise
covariance matrix.

Next, defining bi � vec(Bi) ∈ CNSM×1 and employing
the relations tr

(
AAH

)
= vec(A)Hvec(A) = ‖vec(A)‖2

and vec(AXB) =
(
BT ⊗ A

)
vec(X) [27], the first term on

the right hand side of (7) can be expressed as

tr

(
WH

( L∑
i=1

HiBiAi

)
Rθ

( L∑
i=1

HiBiAi

)H

W
)

=

∥∥∥∥∥
L∑

i=1

(
(R

1
2
θ )T AT

i ⊗ WHHi

)
bi

∥∥∥∥∥
2

.

Further, applying the matrix identities tr(ABC) = tr(CAB)
and tr

(
AHBCDH

)
= vec(A)H((DH)T ⊗ B)vec(C) [27]
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on the second and third terms in (7), the MSE for a given W
can be rewritten as

EC({bi}L
i=1|W)

=

∥∥∥∥∥
L∑

i=1

(
(R

1
2
θ )T AT

i ⊗ WHHi

)
bi

∥∥∥∥∥
2

+
L∑

i=1

bH
i (RT

i ⊗ HH
i WWHHi)bi

−2Re
(
vec((AiRθWHHi)H)Hbi

)
+tr(WHRFCW+Rθ).

(9)

Similarly, applying the vectorization operator on (5),
the optimization problem to compute {bi} and {Σj} for a
given W can be formulated as

min
{bi},{θi}

{Σj}
EC({bi}L

i=1|W)

s. t. τPC,i + τIbH
i Qibi

≤ τEαiMi

1 − Ωi

( 1
1 + e−ai(θi−bi)

− Ωi

)
, i = 1, . . . , L,

θi ≤
∑K

j=1
tr(GijΣjGH

ij ), i = 1, . . . , L,

tr(Σj) ≤ PT,j , and Σj � 0, j = 1, . . . , K, (10)

where Qi � (AiRθAH
i + Ri)T ⊗ INS .

It can be easily verified that (10) is a convex problem [25].
However, it does not have a closed form solution and must be
solved by interior point algorithms [28]. Now, W, {bi}, and
{Σj} can be obtained by an iterative alternating minimization
algorithm in Algorithm 1, which is shown above. The algo-
rithm can be terminated when the MSE EC({B(n)

i }L
i=1,W

(n))
converges, where n is the iteration index. The individual
precoders are calculated as Bi = ivec(bi, NS).

Algorithm 1 Centralized Algorithm

Initialize n = 0 and B(0)
i for i = 1, . . . , L.

repeat
Compute W(n+1) from (8) with Bi = B(n)

i , ∀i.
Calculate {b(n+1)

i } and {Σ(n+1)
j } by solving (10) with

W = W(n+1).
Obtain B(n+1)

i = ivec(b(n+1)
i , Ns).

Set n = n + 1.
until convergence

A. Convergence of Centralized Algorithm

Due to convexity of the problems in (8) and (10), we can
observe that

EC({B(n)
i }L

i=1,W
(n)) ≥ min

w
EC(W|{B(n)

i }L
i=1)

≥ min
{bi},{Σj}

EC({bi}L
i=1|W(n+1))

= EC({B(n+1)
i }L

i=1,W
(n+1)).

Thus, EC({B(n)
i }L

i=1,W
(n)) monotonically decreases with the

iteration index n and is bounded from below.

The objective function in (7) is block-convex, i.e.
EC({Bi}L

i=1,W) is convex with the variables {Bi}L
i=1 or W

fixed. Also, it can be seen that the problems (8) and (10) have
an unique solution for a given {Bi}L

i=1 and W, respectively.
Further, for every feasible point ({B0

i }, {Σ0
j},W0), let us

define a set

B0 =
{
({Bi}, {Σj},W)|EC({Bi}L

i=1,W) ≤ EC({B0
i },W0),

0≤τI tr(Bi(AiRθAH
i +Ri)BH

i )≤(τEαiPH,i({Σ0
j})

− τPC,i

)
, ∀i, 0 ≤ tr(Σj) ≤ PT,j ,Σj � 0, ∀j

}
.

This set is closed since it is a Cartesian product of the
preimage of the continuous functions EC({Bi}L

i=1,W), hi :
RNS×M → R+, hi(Bi) = τI tr(Bi(AiRθAH

i + Ri)BH
i ),

and gj : S
NE×NE
+ → R+, gj(Σj) = tr(Σj) on the closed

sets [0, EC({B0
i },W0)], [0, τEαiPH,i({Σ0

j}) − τPC,i], and
[0, PT,j ], ∀i, j, respectively. As B0 is bounded, from the
Borel-Heine Theorem, B0 is a compact set. Hence, all the
conditions in [29, Th. 1] for the convergence of alternating
minimization algorithm are fulfilled. Thus, we can conclude
that Algorithm 1 converges to the set of stationary points.

B. Computational Complexity

The optimization problem in (10), which comprises a
quadratic objective function with LMNS variables and
positive semidefinite (PSD) constraint on K variables of
dimension NE × NE , can be reformulated as a semidefinite
program (SDP). Then, the worst-case complexity to solve (10)
can be determined as O((LMNS + KN2

E)3.5) [28]. Thus,
for a large L, the computational requirements become pro-
hibitively high.

The FC executes the algorithm and feeds back {Bi} to
the sensors and {Σj} to the E-APs. Consequently, it requires
the knowledge of the observation statistical information
Ai and Ri along with global CSI to implement the algorithm.
This leads to significant communication overheads between
the nodes and FC, especially when the channels vary often.
Therefore, it is desired to develop a distributed algorithm
that has low computational complexity and communication
overhead at every entity of the network. This is particularly
important in WPSNs, since the nodes have a limited
computational power and the communication between the
nodes and the FC is expensive. In the next section, we propose
a low complex distributed algorithm to find W, {Bi}L

i=1,
and {Σj}K

j=1 without exchanging actual CSI and observation
matrices.

IV. DISTRIBUTED ALGORITHM FOR MSE MINIMIZATION

In this section, we present a distributed algorithm in which
the network of sensors and E-APs collectively solve the global
MSE minimization problem in (6). To this end, the sensor
nodes need the knowledge of the optimal W to evaluate the
precoders. Hence, first we begin with developing an algorithm
to determine the fusion rule at every sensor nodes.
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A. Local Computation of MMSE Fusion Rule

We assume that the FC does not have global CSI and obser-
vation statistical information. Therefore, it cannot calculate
and feedback W to the nodes. In that case, the network of sen-
sors collectively identify W by exchanging messages among
themselves. Let Wi be the fusion rule calculated locally at
node i. Then, the objective function (7) is redefined as

ED({Bi}, {Wi})

= tr(Rθ) +
∥∥∥

L∑
i=1

WH
i HiBiAiR

1
2
θ

∥∥∥
2

F

+
L∑

i=1

tr

(
WH

i

(
HiBiRiBH

i HH
i +

1
L

RFC

)
Wi

)

−2Re
(
tr(WH

i HiBiAiRθ)
)
. (11)

Now solving (8) is equivalent to addressing the optimization
problem

min
{Wi},W

ED({Bi}, {Wi})
s. t. Wi = W, i = 1, . . . , L, (12)

since both (8) and (12) have an identical solution. The con-
straint in (12) is known as the consensus constraint which
forces the local information Wi at the ith node to be equal to
the actual W. Let us define wi = vec(Wi) and w = vec(W).
Then, for a given {Bi}, the MSE in (11) can be further
modified as

ED({wi}|{Bi}) = tr(Rθ) +
∥∥∥∥

L∑
i=1

Diwi

∥∥∥∥
2

+
L∑

i=1

wH
i Yiwi − 2Re(wH

i hi), (13)

where hi � vec(HiBiAiRθ) ∈ CNF Mθ , Di � INF ⊗
(HiBiAiR

1
2
θ )H ∈ CN2

F ×NF Mθ , and Yi � IMθ
⊗

(HiBiRiBH
i HH

i + 1
LRFC) ∈ CNF Mθ×NF Mθ .

Subsequently, using the vectorization operator on the con-
straint in (12) and introducing auxiliary variables {fi},
the optimization problem to find wi is recast as

min
{wi},{fi},w

∥∥∥∥
L∑

i=1

fi

∥∥∥∥
2

+
L∑

i=1

wH
i Yiwi − 2Re(wH

i hi)

s. t. Diwi = fi, i = 1, . . . , L,

wi = w, i = 1, . . . , L. (14)

In the above problem, the auxiliary variables {fi} enable us
to decompose the objective function into a sum of the local
cost functions li(wi) = wH

i Yiwi − 2Re(wH
i hi)) and the

shared global loss function
∥∥∥∑L

i=1 fi
∥∥∥

2

. The ith sensor node

should independently design wi and fi to minimize the local
cost as well as the global cost function. We can adopt the
ADMM technique to solve this problem in a distributed man-
ner without any coordination from the FC [30]. The ADMM
enforces the consensus constraints in a scalable and robust
manner, and achieves a faster convergence to the distributed
solution.

To this end, the augmented Lagrangian for problem (14)
with the quadratic penalty function for the constraint violations
is formed as

Jw({wi}, {fi},w, {yi}, {xi})

=
∥∥∥∥

L∑
j=1

fj

∥∥∥∥
2

+
L∑

i=1

(
wH

i Yiwi − 2Re
(
wH

i hi

)

+ Re
(
yH

i (Diwi − fi)
)

+
ρu

2
‖Diwi − fi‖2

+ Re
(
xH

i (wi − w)
)

+
ρw

2
‖wi − w‖2

)
, (15)

where ρu and ρw are penalty parameters, and yi and xi equal
the dual variables for the first and second constraint in (14),
respectively. We employ the augmented Lagrangian because
the intermediate ascent step to update w is affine, which may
yield unbounded solutions.

It can be seen that optimization for wi is separable in (15)
and the terms can be simplified as Re(yH

i (Diwi − fi)) +
ρu

2 ‖Diwi − fi‖2 = ρu

2 ‖Diwi − fi + ui‖2 − ρu

2 ‖ui‖2, where
ui = yi/ρu. Hence, relying on the ADMM technique [30],
we obtain the following iterative steps for problem (14) as

w(k+1)
i = argmin

wi

(
wH

i Yiwi − 2Re(wH
i hi)

+Re(x(k)H
i (wi−w(k)))+

ρw

2
‖wi − w(k)‖2

+
ρu

2
‖Diwi − f (k)

i + u(k)
i ‖2

)
, (16)

w(k+1) = argmin
w

L∑
i=1

ρw

2
‖w(k+1)

i −w‖2−Re(x(k)H
i w),

(17)

{
f (k+1)
i

}L

i=1
= argmin

{fj}

(
ρu

2

L∑
j=1

∥∥Djw
(k+1)
j − fj + u(k)

j

∥∥2

+
∥∥∥∥

L∑
j=1

fj

∥∥∥∥
2)

, (18)

x(k+1)
i = x(k)

i + ρw(w(k+1)
i − w(k+1)), (19)

u(k+1)
i = u(k)

i + (Diw
(k+1)
i −f (k+1)

i ), (20)

where the superscript k is the iteration index.
Next, we derive closed form solutions to address the sub-

problems in (16)–(20). It is apparent that (16) is an uncon-
strained quadratic optimization problem. Thus, by computing
the gradient and equating it to zero, the optimal point at the
ith node is given by

w(k+1)
i =

(
Yi + ρw

2 INF Mθ
+ ρu

2 DH
i Di

)−1
(
hi + ρw

2 w(k)

− 1
2x

(k)
i + ρu

2 DH
i

(
f (k)
i − u(k)

i

))
. (21)

This step is executed independently in parallel at all nodes
i = 1, . . . , L.
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Differentiating the objective function in (17) and setting it
to zero, it follows

w(k+1) =
1
L

L∑
i=1

(
w(k+1)

i +
1

ρw
x(k)

i

)
. (22)

Summing up the update expression in (19) overall i and
substituting w(k+1), we find that

1
L

L∑
i=1

x(k+1)
i =

1
L

L∑
i=1

x(k)
i +

ρw

L

L∑
i=1

(
w(k+1)

i −w(k+1)
)

=0

which indicates that the sum of dual variables xi is zero.
Therefore, the optimal consensus variable can be simplified
as

w(k+1) =
1
L

L∑
i=1

w(k+1)
i . (23)

To solve the sub-problem in (18), let us introduce an
auxiliary variable f̄ = 1

L

∑L
i=1 fi. From the procedure outlined

in Appendix, f (k+1)
i and f̄ (k+1) are given by

f (k+1)
i = f̄ (k+1) + Diw

(k+1)
i + u(k)

i

− 1
L

L∑
i=1

(
Diw

(k+1)
i + u(k)

i

)
(24)

and

f̄ (k+1) =
ρu

2L + ρu

L∑
j=1

(Djw
(k+1)
j + u(k)

j ). (25)

Now, substituting f (k+1)
i in the update step in (20) yields

u(k+1)
i = 1

L

∑L
j=1(Djw

(k+1)
j +u(k)

j )− f̄ (k+1), which implies

that the dual variables u(k+1)
i are equal across all the sensor

nodes and can be replaced with a single variable u(k+1).
Hence, the expression for f (k+1)

i reduces to f (k+1)
i =

f̄ (k+1) +Diw
(k+1)
i − 1

L

∑L
i=1 Diw

(k+1)
i and the dual variable

u(k+1) can be determined as

u(k+1) = u(k) − f̄ (k+1) +
1
L

L∑
j=1

(Djw
(k+1)
j ). (26)

This simplifies the update step in (25) to

f̄ (k+1) =
ρu

2L + ρu

⎛
⎝Lu(k) +

L∑
j=1

Djw
(k+1)
j

⎞
⎠ . (27)

The update steps in (23) and (26) require the nodes to gather
Diwi and wi to form the averages. These updates are also
carried out in parallel by all the nodes. Finally, inserting the
optimal f (k+1)

i and w(k+1) in (21), wi at node i can be
updated as

w(k+1)
i =

(
Yi+

ρw

2
INF Mθ

+
ρu

2
DH

i Di

)−1 (
hi +

ρw

2
w(k)

−x(k)
i

2
+

ρu

2
DH

i

(
f̄ (k) + Diw

(k)
i − d̄(k)

w − u(k)
))

,

(28)

where d̄(k)
w = 1

L

∑L
i=1 Diw

(k)
i .

B. Distributed Computation of Precoders and
Energy Covariance Matrices

With the fusion rule known at the sensor nodes, it remains
to find the optimal precoders and the energy covariance
matrices. In this section, we present an algorithm to locally
calculate Bi at the ith sensor node and Σj at the jth E-AP
to minimize the MSE. Let us denote bi � vec(Bi) and Wi

as the fusion rule obtained locally at node i. Replacing the
objective function in (10) with (11), we can recast the precoder
optimization problem as

min
{bi},{zi}

{Σj}

∥∥∥∥
L∑

i=1

zi

∥∥∥∥
2

+
L∑

i=1

bH
i Ξibi − 2Re(wH

i HA,ibi)

s. t. Cibi = zi, i = 1, . . . , L,

τPC,i + τIbH
i Qibi

≤ τEαiMi

1 − Ωi

( 1
1 + e−ai(θi−bi)

− Ωi

)
, i = 1, . . . , L

θi ≤
∑K

j=1
tr(GijΣjGH

ij ), i = 1, . . . , L,

Σj � 0 and tr(Σj) ≤ PT,j , j = 1, . . . , K, (29)

where {zi} and {θi} are the auxiliary variables, and we
define Ξi � RT

i ⊗ HH
i WiWH

i Hi ∈ CMNS×MNS , HA,i �
RT

θ AT
i ⊗ Hi ∈ CNF Mθ×MNS , and Ci � (R

1
2
θ )T AT

i ⊗
WH

i Hi ∈ CM2
θ ×MNS .

Let {yi}, {λi} and {βi} be the dual variables associated
with the first constraint, power constraint on bi, and third
constraint in (29), respectively. Further, let us denote {νj} and
{Zj} as the dual variables corresponding to power constraint at
E-APs and PSD constraints on the energy covariance matrices,
respectively. The augmented Lagrangian of problem (29) is
now given by

Jb =
∥∥∥∥

L∑
i=1

zi

∥∥∥∥
2

+
L∑

i=1

(
bH

i Ξibi − 2Re(wH
i HA,ibi)

+Re(yH
i (Cibi−zi))+

ρv

2
‖Cibi−zi‖2+λiτPC,i+βiθi

+λiτIbH
i Qibi − τEαiMiλi

1 − Ωi

( 1
1 + e−ai(θi−bi)

− Ωi

))

+
K∑

j=1

tr

((
νjINE −Zj−

L∑
i=1

βiGH
ijGij

)
Σj

)
− νjPT,j ,

(30)

where ρv

2 ‖Cibi−zi‖2 represents the penalty function on con-
straint in (29) and ρv indicates the penalty parameter. Defining
vi = yi/ρv, the term Re(yH

i (Cibi − zi)) + ρv

2 ‖Cibi − zi‖2

is simplified as ρv

2 ‖Cibi − zi + vi‖2 − ρv

2 ‖vi‖2.
From (30), it can be seen that the optimization for bi is

separable. Hence, adopting the ADMM technique, {bi} and
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{Σj} are determined as

b(k+1)
i = argmin

bi

(
bH

i Ξibi − 2Re(wH
i HA,ibi)

+ λ
(k+1)
i τIbH

i Qibi

+
ρv

2
‖Cibi − z(k)

i + v(k)
i ‖2

)
, (31)

{z(k+1)
i }L

i=1 = argmin
{zj}

(
ρv

2

L∑
j=1

∥∥Cjb
(k+1)
j − zj + v(k)

j

∥∥2

+
∥∥∥

L∑
j=1

zj

∥∥∥
2
)

, (32)

v(k+1)
i = v(k)

i + (Cib
(k+1)
i − z(k+1)

i ), (33)

θ
(k+1)
i = argmin

θi

(
β

(k+1)
i θi − λ

(k+1)
i

τEαiMi

1 − Ωi

×
( 1

1 + e−ai(θi−bi)
− Ωi

))
,

(34)

{Σ(k+1)
j , ν

(k+1)
j }K

j=1

= arg max
{νl≥0}
{Zl�0}

min
{Σl}

( K∑
l=1

tr
((

νlINE − Zl

−
L∑

i=1

β
(k+1)
i GH

il Gil

)
Σl

)
− νlPT,l

)
.

(35)

Next, we derive closed form expressions to solve the above
steps in parallel at different nodes. As (31) is a quadratic
minimization problem, the first order optimality conditions
lead to a solution

b(k+1)
i =

(
Ξi + λ

(k+1)
i τIQi +

ρv

2
CH

i Ci

)−1

×
(
HH

A,iw
(k)
i +

ρv

2
CH

i (z(k)
i − v(k)

i )
)

. (36)

The precoder bi should satisfy the complementary slack-

ness conditions λ
(k+1)
i (τIb

(k+1)H
i Qib

(k+1)
i − τEαiP

(k)
H,i +

τPC,i) = 0, ∀i.
Therefore, from (36), we can evaluate the Lagrange multi-

pliers λ
(k+1)
i from the equation [31, Appendix A]

∥∥∥Q
1
2
i

(
Ξi + λ

(k+1)
i τIQi +

ρv

2
CH

i Ci

)−1

t(k)
i

∥∥∥
2

=
τEαiP

(k)
H,i − τPC,i

τI
, (37)

where t(k)
i = HH

A,iw
(k)
i + ρv

2 CH
i (z(k)

i − v(k)
i ). It should

be noted that the sensor nodes need not know the actual
energy covariance matrices, but only estimate the harvested
power P

(k)
H,i .

Next, from the procedure described in Appendix, a solution
to the problem in (32) is obtained as

z(k)
i = z̄(k) + Cib

(k)
i + v(k)

i − 1
L

L∑
i=1

Cib
(k)
i + v(k)

i , (38)

where z̄(k+1) = ρv

2L+ρv

1
L

∑L
j=1(Cjb

(k+1)
j + v(k)

j ). By apply-
ing arguments similar to Section IV-A, we can prove that the
dual variable v(k+1)

i is the same for all the sensor nodes.
Hence, replacing v(k+1)

i for i = 1, . . . , L with v(k+1), the dual
variable is written as

v(k+1) = v(k) − z̄(k+1) +
1
L

L∑
j=1

(Cjb
(k+1)
j ). (39)

By computing the derivative of the objective function in (34)
with respect to θi and equating it to zero, βi can be deter-
mined as

β
(k+1)
i =aiλ

(k+1)
i

τEαiMi

1 − Ωi

exp
[− ai(θ

(k+1)
i − bi)

]
(
1 + exp

[
−ai(θ

(k+1)
i − bi)

])2 .

(40)

It can be shown that for the optimal solution of (29), the third
constraint will be satisfied with equality. Therefore, θ

(k+1)
i can

be updated as θ
(k+1)
i =

∑K
j=1tr(GijΣ

(k)
j GH

ij ).
Next, to obtain {Σ(k+1)

j }, the dual function in (35) is
expressed as

g({νj}, {Zj}) = inf
{Σj}

( K∑
j=1

−νjPT,j + tr
((

νjINE − Zj

−
L∑

i=1

β
(k+1)
i GH

ijGij

)
Σj

))
. (41)

For a given optimal {β(k+1)
i }, g({νj}, {Zj}) can be decom-

posed into K independent functions. Moreover, the objective
function in (41) is linear in Σj , which reduces to [32]

g({νj}, {Zj})
=
{
−νjPT,j , if νjINE −∑L

i=1β
(k+1)
i GH

ijGij � 0,
−∞, otherwise.

Thus, a solution ν
(k+1)
j of the dual optimization problem

in (35) can be derived as

min
νj

νjPT,j

s. t. νj ≥ 0 and νjINE �
∑L

i=1
β

(k+1)
i GH

ijGij . (42)

It is known that a solution of the above problem equals
ν

(k+1)
j = λmax

(∑L
i=1β

(k+1)
i GH

ijGij

)
, where λmax(X) is the

dominant eigenvalue of a matrix X [32].
In addition, the dual of the above problem in (42) is given by

max
Xj

tr

(∑L

i=1
β

(k+1)
i GH

ijGijXj

)

s. t. Xj � 0 and tr (Xj) ≤ PT,j . (43)

The problem is optimized by a solution X∗
j = PT,jqjqH

j

for j=1, . . . , K , where qj is obtained as qj =
νmax

(∑L
i=1β

(k+1)
i GH

ijGij

)
and νmax(X) represents

the eigenvector corresponding to the dominant eigenvalue of
a matrix X [32]. Since the Slater’s conditions are met in the
problem in (42), strong duality is satisfied by the solutions
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of (42) and (43). Therefore, the optimal energy covariance
matrices are rank-one and are determined by

Σ(k+1)
j = PT,jqjqH

j , j = 1, . . . , K.

Finally, substituting (38) and (39) in (36), {bi} are
updated as

b(k+1)
i =

(
Ξi + λ

(k+1)
i τIQi +

ρv

2
CH

i Ci

)−1

t(k)
i , (44)

i = 1, . . . , L, where t(k)
i = HH

A,iw
(k)
i + ρv

2 CH
i (Cib

(k)
i +

z̄(k) − c̄(k)
b − v(k)) and c̄(k)

b = 1
L

∑L
i=1 Cib

(k)
i . Collating the

derivations presented in the previous sections, the distributed
algorithm to find {bi}, {wi}, and {Σj} is summarized in
Algorithm 2 below. In Algorithm 2, the inner loop allows
the distributed computation of precoders and the MMSE
fusion rule, whereas the outer loop is needed for alternating
minimization of {bi} and {wi}.

Algorithm 2 Distributed Algorithm for MSE Minimization

Initialize n = 0 and B(0)
i for i = 1, . . . , L.

repeat
repeat

Compute w(k)
i from (28).

Broadcast Diw
(k)
i and w(k)

i to other nodes.
Calculate local variables d̄(k)

w = 1
L

∑L
i=1 Diw

(k)
i and

w(k) = 1
L

∑L
i=1 w(k)

i .
Update local variable f̄ (k) using (27).
Update dual variables u(k) using (26) and x(k)

i

using (19).
until convergence
Update Ξi and Ci for i = 1, . . . , L.
repeat

Compute b(k)
i from (44), λ

(k)
i from (37), and β

(k)
i

from (40).
Broadcast β

(k)
i to E-APs and Cib

(k)
i to other nodes.

Compute local variable c̄(k)
b = 1

L

∑L
i=1 Cib

(k)
i .

Update z̄(k) using (38) and v(k) using (39).
Obtain qj = νmax

(∑
i β

(k)
i GH

ijGij

)
.

Broadcast sj with Σ(k)
j = PT,jqjqH

j for energy transfer.
until convergence
Update Yi,Di, and hi for i = 1, . . . , L.
Set n = n + 1.

until {bi}, {wi}, {Σj} converge

Since the dual variables converge to the optimal point and
are the same at all the nodes in the network, the nodes can
simultaneously switch between updating the block variables
when ‖u(k+1)−u(k)‖ ≤ εu and ‖v(k+1)−v(k)‖ ≤ εv without
requiring a central controller to coordinate the alternating
minimization process. Here, the values for εu and εv can be
chosen prior based on the desired accuracy.

C. Convergence of Distributed Algorithm

It is evident that strong duality holds for problems
in (14) and (29) since they satisfy the Slater’s condi-
tions. Further, the objective functions in (14) and (29) are

closed, proper, and quadratic convex functions. In addition,
they are a sum of Lipschitz continuous functions1 since
Yi � 0, Ri � 0, Ξi = RT

i ⊗ HH
i WiWH

i Hi � 0, ∀i.
As a result, from [33, Table 2], it can be concluded that

{w(k)
i }, {f (k)

i }, {u(k)
i } and {b(k)

i ,Σ(k)
j }, {z(k)

i }, {v(k)
i } from

the recursions in (16)–(20) and (31)–(35) converge to the opti-
mal points of (14) and (29), respectively. The outer iterations
are nothing but the alternating minimization of (14) and (29),
which are equivalent to the optimization problems (8) and (10)
by definition. Therefore, by the arguments presented in
Section III-A for the convergence of the alternating mini-
mization procedure to solve (6), Algorithm 2 is guaranteed
to converge to the set of stationary points.

D. Computational Complexity and Message
Exchange Overhead

For the calculations in (21), (36) and (43), the computational
requirement at each sensor node is O((MNS)3 + (MθNF )3)
and that at the each E-AP is O(N3

E). Therefore, the proposed
distributed algorithm has much lower complexity in contrast
to the centralized algorithm, which has the complexity of
O((LMNS + KNE)3.5). For large L, the distributed algo-
rithm is computationally efficient by a factor of O(L2.5). For
example, in a WPSN consisting of two E-APs with NE = 4,
10 sensors with Mθ = 2, M = 2, NS = 2, and a FC with
NF = 4, it costs 7.662× 105 floating point operations (flops)
at the FC to execute the centralized algorithm. In contrast,
the distributed algorithm requires only 6.4 × 102 flops which
is less than 0.1% compared to the centralized algorithm.

As for the message exchange overhead, node i computes
bi, λi,Cibi, wi and Diwi, and broadcasts Cibi, wi, and
Diwi to other sensor nodes and λi to the E-APs. Hence,
the number of messages shared by a node in each iteration
is O(M2

θ +NF Mθ+N2
F ), which is independent of the number

of observations and the number of sensors. The sensors can
obtain CSI using the training signals transmitted by the FC.
Finally, the nodes may transmit the MMSE fusion rule to the
FC in order to relieve the FC from acquiring the CSI and the
observation statistical information.

V. SIMULATION RESULTS

In this section, we present the MSE performance of
the centralized and the distributed algorithms proposed in
Sections III and IV. To benchmark the MSE performance,
we include the Bayesian Cramer-Rao bound (BCRB) on
the MSE of the estimate for the ideal scenario where the
observations x = [xT

1 ,xT
2 , . . . ,xT

L ]T are available perfectly at
the FC for parameter estimation. The BCRB is given by [34]

BCRB = tr((R−1
θ + AHR−1A)−1), (45)

where A � [AT
1 ,AT

2 , . . . ,AT
L]T and R � diag(R1, . . . ,RL)

defines a block diagonal matrix with matrices Ri on the
ith diagonal. For comparison, we also consider a conven-
tional two-step framework for parameter estimation in WPSNs.

1A function f from R
n into R is called Lipschitz continuous if there is a

constant α > 0 such that ‖∇f(y)−∇f(x)‖ ≤ α‖y−x‖, for all y, x ∈ R
n.

It can be easily seen that f(x) = xT Ax is Lipschitz continuous for A � 0.
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Fig. 2. MSE as a function of transmit power at E-APs with L sensors and
K = 2.

In the first step, the energy covariance matrices {Σconv
j } are

designed to maximize the total harvested power P conv
H,sum =∑L

i=1 PH,i employing the procedure proposed in [24], where
PH,i is given by (1) and (2). In the next step, the optimal joint
MMSE precoder and the fusion rule are obtained as in [3] with
the data transmission power at the ith sensor set as P conv

H,i .
For the simulations, we consider a WPSN with L sensors

and K E-APs distributed randomly where the distance between
the sensor nodes and the FC is 100 m and that between
the sensor nodes and the E-APs is 10 m. The number of
antennas at the sensors, the FC, and the E-APs are NS = 2,
NF = 2, and NE = 4, respectively. The circuit energy
PC,i is set to 20 μW, ∀i, time durations τI and τE are set
to 0.5. The parameters for EH circuit are taken as ai = 1500,
bi = 0.0014, and Mi = 24 mW [25]. The FC noise covariance
matrix is set as RFC = σ2

FCINF with the noise variance
σ2

FC = −90 dBm [35], [36]. All the channel coefficients
are independent and identically distributed (i.i.d.) complex
Gaussian random variables with zero mean and unit variance.
The path-loss is set to c0

(
d
d0

)−ω

, where c0 = −20 dB is

a constant attenuation at a reference distance d0 = 1 m,
d represents the distance between two terminals, and ω = 3
indicates the path-loss exponent [15], [37]. The parameter is
assumed to be Gaussian with θ ∼ CN (0, IMθ

) and Mθ = 2.
The sensor nodes acquire observations of dimension M = 2.
The elements of the observation matrix Ai are generated as
i.i.d. Gaussian random variables with zero mean and unit
variance. The observation noise covariance matrix at the sensor
nodes Ri equals 0.1IM . For all simulations, the initialization

is chosen as B(0)
i =

√�K
j=1 PT,j‖Gij‖2

F

NSM 1NS×M , where 1NS×M

stands for a NS×M matrix of all ones. The number of iter-
ations is fixed to nmax = 20, while the number of consensus
iterations for Algorithm 2 is set to kmax = 20 and the ADMM
penalty parameters are taken as ρw = ρu = ρv = 4.

Fig. 2 shows the MSE of the estimate as a function of the
transmit power at the E-APs for K = 2 and L = 15 or 20.
From the figure, we can observe that the proposed joint designs
approach the BCRB quickly and have superior estimation

Fig. 3. MSE as a function of number of sensors with K = 2 and
PT,1 = PT,2 = 30 dBm.

Fig. 4. Computational complexity versus number of sensors for K E-APs,
M = 2, NS = 2, NF = 2 and NE = 4.

accuracy in comparison to a conventional design. It also
confirms that the distributed algorithm performs very close to
the centralized algorithm with much reduced complexity. The
proposed algorithms yield as much as 5 dB gain for L = 15
and 7 dB gain for L = 25 over the conventional method.

In Fig. 3, we plot the MSE in terms of the number
of sensors with the transmit power at the E-APs PT,1 =
PT,2 = 30 dBm. It should be noted that as the number
of sensors increases, the performance gain becomes more
pronounced in comparison to the conventional techniques. This
is because the proposed methods recharge the sensors taking
into account local CSI and observation statistics at the nodes,
thereby increasing the estimation diversity [38]. Moreover,
the centralized and distributed algorithms exhibit almost the
same performance. This is important because, in contrast to
the centralized algorithm, the computational complexity of the
distributed algorithm is independent of the number of sensors.

In Fig. 4, we plot the total computational complexity as
a function of number of sensors in a WPSN with M = 2,
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Fig. 5. MSE as a function of iteration number with L sensors, K = 2,
PT,1 = PT,2 = 30 dBm and kmax = 20.

Fig. 6. MSE as a function of α with K = 2, L = 15, 25 and
PT,1 = PT,2 = 25 dBm.

NS = 2, NF = 2 and NE = 4. The centralized algorithm has
a complexity of O((LMNS+KNE)3.5) at the FC. As derived
in Section IV-D, the complexity of the distributed algorithm is
O((MNS)3 + (MθNF )3) at each sensor node and O(N3

E) at
each E-AP. On the other hand, the conventional scheme in [3],
which is an iterative algorithm, carries out LO(N3

S +LMN2
S)

computations in each iteration. The graph shows that as the
number of sensors increases, the computational requirement
to execute the centralized algorithm becomes prohibitively
large. In contrast, the distributed algorithm offers a significant
reduction in computational costs over both the centralized
algorithm and the conventional method.

In Fig. 5, we demonstrate the convergence behavior of
Algorithms 1 and 2. The number of times that the sensors
exchange the messages is set to kmax = 20. The simulation
shows that the MSE monotonically decreases with the iteration
number and converges in a few iterations. It can be seen that
even for a larger number of sensors the distributed algorithm
converges within 10 iterations.

Fig. 6 presents the MSE performance of the distributed
algorithm for varying levels of α = αi. We consider a

WPSN where the distance between sensors is equal to 10m,
and assume the channel between sensors is Gaussian with
the noise variance σ2

FC = −90 dBm and path-loss exponent
ω = 2. The performance gain decreases when α is close to
zero or one. This because as α → 1, the accuracy of the
messages exchanged reduces due to a lower SNR at nodes,
and as α → 0, the resource available for data transmission
gets smaller. From Fig. 6, it can be observed that the MSE is
more sensitive to the availability of energy resources for data
transmission. In the distributed algorithm, each node shares a
total of niterO(M2

θ + NF Mθ + N2
F ) messages, where niter is

the number of exchanges over short distances. This consumes
only a fraction of the energy used for data transmission by the
nodes to the FC, which is located at a much farther distance.

VI. CONCLUSION

This paper has proposed centralized and distributed algo-
rithms to jointly optimize the precoders, energy covariance
matrices and MMSE fusion rule in MIMO WPSNs. Employ-
ing the ADMM technique, we have developed an iterative
distributed algorithm that allows local computation of the
precoders and the fusion rule at the sensor nodes, and the
energy covariance matrices at the E-APs. Further, we have
derived low complex closed form expressions to determine
the optimal solutions. Finally, numerical simulations have
validated that the proposed techniques perform superior to a
conventional design. Also, the distributed algorithm exhibits
almost the same performance as the centralized algorithm with
much reduced computational complexity. It will be worthwhile
to investigate the performance improvement with a transceiver
design with both power and data exchange between the sensor
nodes, and joint transceiver design and path planning for
mobile data collection and energy transfer.

APPENDIX

SOLUTION TO PROBLEM (18)

Introducing an auxiliary variable f̄ = 1
L

∑L
i=1 fi, the opti-

mization problem in (18) can be rewritten as

min
{fi},f̄

L2
∥∥f̄∥∥2 +

ρu

2

L∑
j=1

‖Djw
(k+1)
j − fj + u(k)

j ‖2

s. t.
1
L

L∑
j=1

fj = f̄ . (46)

For a fixed f̄ (k+1) in the above problem, employing the
Karush-Kuhn-Tucker (KKT) conditions, one can obtain a
solution as

f (k+1)
i = Diw

(k+1)
i + u(k)

i +
μf

ρuL
, (47)

where μf is the dual variable corresponding to the constraint
in (46).

Now, inserting the solution in the constraint
1
L

∑L
j=1 f (k+1)

j = f̄ (k+1), the optimal dual variable is

given by
µf

ρuL = f̄ (k+1) − 1
L

∑L
i=1(Diw

(k+1)
i + u(k)

i ).
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Substituting
µf

ρuL , the auxiliary variables are expressed by

f (k+1)
i = f̄ (k+1)+Diw

(k+1)
i +u(k)

i − 1
L

L∑
j=1

(Djw
(k+1)
j +u(k)

j ).

(48)

Replacing f (k+1)
i in (18) with (48) simplifies the problem to

min
f̄

L2
∥∥f̄∥∥2 +

Lρu

2

L∑
i=1

∥∥∥f̄ − 1
L

L∑
j=1

(
Djw

(k+1)
j + u(k)

j

) ∥∥∥
2

,

which is a quadratic minimization problem. Therefore, obtain-
ing the gradient and equating it to zero, a closed form solution
is determined as

f̄ (k+1) =
ρu

2L + ρu

1
L

L∑
j=1

(
Djw

(k+1)
j + u(k)

j

)
.
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