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Belief Propagation for Energy Efficiency
Maximization in Wireless Heterogeneous Networks

Sang Hyun Lee , Member, IEEE, Mintae Kim, Hunmin Shin, and Inkyu Lee , Fellow, IEEE

Abstract— In this article, we study an energy efficient man-
agement of two-tier heterogeneous cellular networks (HetNets)
which consist of one macro base station (BS) and multiple
micro base stations. This article presents a distributed user
association algorithm that maximizes the network-wide energy
efficiency (EE) in HetNets. A subset of BSs that support only
a small number of users can be turned off to save the energy
consumption. By turning off BSs in the HetNet and offloading
serving users to adjacent active BSs, the network-wide energy
consumption is minimized, while the sum throughput is max-
imized. To solve the problem efficiently, we introduce a new
approach based on a message-passing framework and derive
a distributed load balancing algorithm. The proposed method
provides a very efficient solution with reduced computational
complexity compared to existing schemes. Simulation results ver-
ify that the proposed algorithm outperforms other conventional
load balancing strategies.

Index Terms— Energy-efficiency maximization, belief propaga-
tion, wireless heterogeneous networks.

I. INTRODUCTION

OVER the past decades, demands for a variety of services
in wireless mobile communication systems have dramat-

ically increased [1]. Meanwhile, this has also led to growing
energy consumption in communication infrastructures, which
raises a serious concern from both operators and environments’
perspectives. The 5th generation (5G) wireless system is
predicted to incur 150-170% increases in total network energy
consumption by 2026, with the largest increases in cellular
networking operations [2]. Therefore, the network operators
are interested in technologies that can enhance energy effi-
ciency (EE) to reduce energy costs of the wireless network [3].
Recent research has been focused on the optimization of
the EE towards environmental and economic sustainability.
In response to this, there have been extensive efforts to design
the communication networks from the EE’s point of view
[4]–[8]. The EE is defined as the ratio of the achievable
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throughput to the energy consumption. In order to enhance the
EE, the network throughput is maximized, while the energy
consumption is minimized.

In the mean time, a heterogeneous network (HetNet) has
been regarded as an enabling technology for enhancing the
EE [9]–[11]. A typical HetNet consists of a macro cell and
a number of small cells. A multiuser multiple input multiple
output (MU-MIMO) HetNet has been examined [12] where
a joint linear precoder design maximizes the EE. The authors
in [13] have provided simple models for energy consumption
with different BS types and derived characteristics for micro
BSs. In [14]–[22], several EE maximization strategies have
been presented by turning off a subset of unused BSs to
reduce the energy consumption. Similar optimization based
techniques handling the BS switching also include cell
zooming [23], [24], self-organizing networks [25], and energy
harvesting [26], [27].

Furthermore, such switching-off policies have been
addressed in various aspects of applications. In [28], cell
zooming and sleeping mechanisms have been analyzed for
small cells using stochastic geometry. Also, a node-degree cen-
trality oriented graph-theory based approach has been devel-
oped for power savings in HetNets [29]. In addition, financial
models among multiple operators have been considered in
multi-objective optimization [30] and game theory [31].

Some other studies have taken into account link qualities
between BSs and users for energy efficient BS-user associa-
tion [15], [32]. The aforementioned conventional works have
mostly focused on maximizing the sum of individual EEs.
It may be often important to directly consider a global metric
of the network-wide EE, which is defined as the total sum
rate divided by the total energy consumption from the whole
network point of view [7]. However, the network-wide EE
has a quite complicated structure which requires a special
mathematical consideration of its optimization for energy
efficient network management.

To handle this, we aim to develop a distributed load
balancing algorithm that maximizes the network-wide EE of
the HetNet using the message-passing framework based on
belief propagation [33], [34]. A distributed algorithm has the
following advantages: First, it allows to solve a computation-
ally challenging problem by decomposing it to obtain local
solutions and by combining them to yield the global solution.
Second, it readily adapts to a local topology in the network
by updating the corresponding local configuration.

A simple way for reducing the total energy consumption is
to turn off some BSs. However, it may lead to a throughput
loss, and thus it is critical to identify a right set of turned
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off BSs for maximizing the network-wise EE. The proposed
algorithm appropriately configures the on-off states of the
BSs with the joint consideration of the user association that
achieves the best network sum throughput. To this end, a belief
propagation algorithm conducts a clustering task to obtain the
user association in a distributed way. Individual BSs exchange
the information about whether it should be in an operating
mode via a real number quantity called a message. Based on
the messages, the total number of active BSs is identified to
optimize the EE performance.

Since the network-wide energy consumption can be esti-
mated with this information, the optimization of the EE per-
formance suffices to ensure the maximum network throughput.
Thus, each BS associates users to maximize the total through-
put of its serving users. All decisions are made by BSs and
users via message exchanges in an autonomous way. By virtue
of the message passing operation, the HetNet load balancing
can be optimized with low complexity and, more importantly,
in a distributed manner. As compared to the previous work
[22], which has also applied belief propagation to determine
the switch-off state of BSs with the objective of minimizing
solely the total energy consumption, the proposed approach
enables to jointly compromise nontrivial trade-off relationship
between the energy consumption and the sum throughput to
maximize the network-wide EE in heterogeneous networks.

Major contributions of this article are summarized as
follows:

• An optimization is formulated to maximize the
network-wide EE and readily poses a mixed-integer
nonlinear formulation. This article develops a graphi-
cal model that enables to tackle the total EE in an
autonomous way so that each BS determines its operating
state.

• In two-tier HetNets, a distributed algorithm is derived to
associate users with operating BSs with the objective of
obtaining the largest total EE via a belief-propagation
based message passing framework. The beauty of the
algorithm lies in the fact that the computational loads
are distributed over all network nodes. This means that
the combinatorial optimization with the EE maximization
can be broken down into multiple subproblems without
compromising the optimality of a solution. The proposed
algorithm exhibits over a 26% performance improvement
with respect to existing techniques.

The remaining of the paper is presented as follows: the
system model is illustrated in Section II. In Section III,
we formulate the problem and propose the distributed message
passing algorithm for maximizing the EE. The complexity and
the convergence of the algorithm are analyzed in Section IV.
Simulation results are presented in Section V to evaluate the
proposed algorithm. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

Consider a two-tier downlink HetNet consisting of a single
macrocell overlaid with several dense microcells as shown in
Fig. 1. The sets of BSs and users are denoted by I and A,
respectively. There are one macro BS, B − 1 micro BSs and

Fig. 1. System model.

N users in the HetNet, i.e., B = |I| and N = |A|. The
macro BS, which is assumed to have larger transmit power and
greater user capacity of M1, is designated as BS 1. Another
BS denoted as BS i (i = 2, . . . , B) operates at an individual
microcell and has a limited capacity supporting up to Mi users
with smaller transmit power. Furthermore, it is assumed that
each BS is connected with adjacent BSs via a gateway, which
is realized by reliable wired links such as X2-interfaces in
3GPP-LTE networks [35].

Although the BS network is constructed in an one-branch
tree for simplicity, the shape of the network can be arbitrary
as long as the network forms a tree shape. Users are uniformly
distributed around the macro BS which is located at the center
of the cell. Each BS is equipped with a single antenna and
equal transmit power is allocated to support its users. Each
user can be associated with only a single BS.

For concreteness of the formulation, a binary variable xia

is introduced to represent the association status between user
a (a = 1, . . . , N ) and BS i, i.e., xia = 1 indicates that user
a is associated with BS i. BS i transmits the power Pi. All
macrocells and microcells are assumed to operate in an open
access mode, i.e., no priority for the BS association. User a
receives a message signal from BS i given by

yia =
√
Pid

−λ
ia hiasia +

∑
j∈I\i

√
Pjd

−λ
ja hjasja + nia, (1)

where dia, hia, and sia are the distance between BS i and user
a, the small scale fading coefficient, and the corresponding
transmitted signal, respectively, and nia denotes the additive
Gaussian noise with zero mean and variance σ2. Given a path
loss exponent λ, the corresponding path loss is proportional
to d−λ

ia . The first and second term in (1) correspond to a
message and interference, respectively. Thus, the throughput
dominantly depends on the interference. Since the throughput
and the energy consumption are jointly considered for the EE,
the reduction of the interference and the power dissipation is
essential for the network management.

To do so, some BSs in the network can be turned off. If a BS
comes into a turn-off state, some of the hardware components
in the BS are either completely switched off or operated in
low-power modes so that it disables the pilot transmission
and the associated radio processing for the users within its
coverage [14], which implies that sia becomes zero for BS i
in the idle state. To characterize the on-off state of the i-th
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BS, another binary variable denoted by ui represents the ON
state of the BS. If a single user in A accessing to BS i results
in a nonzero ui, i.e., ui = 1, it holds that ui = maxa∈A xia.
If at least one user is served by BS i, it needs to be turned on,
i.e., ui = 1. Note also that u1 corresponds to the on-off state
of the macro BS and can be thought of as a global parameter.
To consider a group of active BSs, the number of ON-state
BSs in the network, denoted by v, is estimated. This is a global
parameter that has the relationship with local parameters {ui}
as v =

∑B
i=1 ui.

In consequence, the throughput of the link between BS i
and user a is obtained by

Ria = log

(
1 +

Pid
−2λ
ia |hia|2

σ2 +
∑

j∈I\i Pjd
−2λ
ja |hja|2uj

)
. (2)

For user association of a BS, limited resource sharing is
employed. All users supported by the same BS share the
system bandwidth of the BS uniformly. Thus, the total sum
throughput is expressed as a function of {xia} as

R({xia}) =
∑
i∈I

(∑
a∈ARiaxia∑

b∈A xib

)
. (3)

Furthermore, BS i serves up to Mi users at the same time,
and this constraint can be described by

∑
a∈A xia ≤Mi.

When computing the network-wide EE, the total power
of the network can be separated into two portions as the
transmit power PT and the operating power PO of a BS.
Thus, the transmission of message information requires PT ,
while keeping the BS in operating mode consumes PO . If the
number of active BSs and the on-off state of the macro BS
are known, the total energy consumption of the network is
given by Pall(v, u1) = (v−u1)(Pm

T +Pm
O )+u1(PM

T +PM
O ),

where the superscripts m and M of PT and PO account for a
micro BS and a macro BS, respectively. Since v ≥ u1, we set
Pall(0, u1) = Pall(0, 0) = 0.

Then, the EE maximization is formulated as

max
xia∈{0,1}B×N

∑
i∈I
�

a∈A Riaxia�
b∈A xib

Pall(v, u1)
(4a)

subject to
∑
i∈I

xia = 1 ∀a, (4b)

∑
a∈A

xia ≤Mi ∀i, (4c)

ui = max
a∈A

xia ∀i, (4d)

v =
B∑

i=1

ui, (4e)

where the first constraint indicates that each user is associated
with only one BS, the second constraint corresponds to the
limit of the number of users that a BS can serve simul-
taneously, and the third and fourth constraints specify the
on-off state of each BS and the total number of active BSs,
respectively. Thus, the resulting space for feasible configura-
tions is readily seen to be highly nonlinear and combinatorial.
The denominator of the objective requires the estimation of
a global parameter without centralized management for a

distributed control. Furthermore, the numerator has a sum-
of-ratio form which is well known that its optimization is
NP-complete [36]. Therefore, the overall optimization falls
into a class of nonlinear integer programming, which becomes
intractable as the network dimension scales. To handle this
challenging task, a state-of-the-art optimization technique
based on a belief propagation strategy is employed to obtain
a low complexity distributed solution for associations among
users and BSs.

III. DISTRIBUTED ALGORITHM

A. Belief Propagation

In this section, a distributed user association algorithm
is derived based on belief propagation, also known as a
message-passing algorithm. These two terms are called inter-
changeably in the sequel, in that message passing is a popular
way of realizing a distributed solution based on this frame-
work. To find an efficient solution, we provide a graphical
modeling approach such as a factor graph, which facilitates to
address a constrained optimization with belief propagation.

According to [33], [34], the graphical model can be con-
structed to characterize a local structure of the multivariate
function ω(x), which is factorized into a product of
several factor functions νf (·) defined for some subset of
variables xf as ω(x) =

∏
f νf (xf ). Furthermore, this

technique allows to find the best assignment of this func-
tion based on maximum-a-posteriori (MAP) principle, i.e.,
x∗ = arg maxxω(x). The belief propagation techniques
exploit the factorized structure to realize it in a way
of exchanging messages among nodes in the constructed
graph.

A max-product based message-passing algorithm can solve
this MAP optimization problem for a factor graph consisting
of variable and factor nodes [33], [34]. It can be thought
of as an deterministic counterpart of a sum-product-based
message-passing algorithm, which calculates marginal prob-
abilities in a probabilistic model. Since the probability weighs
the objective function, the assignment of variables with the
highest corresponds to the solution of the optimization. Each
node transfers a message to each of its neighbors connected by
an edge. A message transferred from origin κ to destination τ
about variable χ is denoted by μκ→τ (χ = χ0). This message
can be thought of as origin κ tells destination τ how much
it desires variable χ to become χ0 in the optimal assignment.
Basically, two different messages are transferred in two oppo-
site directions along an edge, since there are two nodes at both
ends of the edge. All outgoing messages are updated using
all incoming messages received from neighboring nodes and
sent backward to them. Thus, the message from variable xi to
factor function νf and from factor function νf to variable xi at
the t-th iteration can be expressed, respectively, as μ(t)

xi→νf (xi)
and μ(t)

νf→xi(xi). One cycle of forward and backward transfers
of all messages form a single iteration of the algorithm. These
message transfers continue until all messages converge to
certain fixed values. The corresponding solution is identified
with those values.
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The max-product based message computation rules are
given by

μ(t)
νf→xi

(xi) = max
xf\xi

[
νf (xi,xf\xi)

∏
j �=i

μ(t)
xj→νf

(xj)
]
,(5a)

μ(t+1)
xi→νf

(xi) =
∏
b�=f

μ(t)
νf→xi

(xi), (5b)

where νf (xi,xf\xi) denotes the function with only xi fixed.
Messages are normally expressed in a log-domain represen-
tation, which helps avoiding various numerical issues and
allowing to address a constrained formation, by denoting
the logarithm of messages in (5) by new messages along
with ν̄f (xf ) = log νf (xf ). The resulting max-sum based
computation rules are written as

μ
(t)
ν̄f→xi

(xi) = max
xf\xi

[
ν̄f (xi,xf\xi) +

∑
j �=i

μ
(t)
xj→ν̄f

(xj)
]
,

(6a)

μ
(t+1)
xi→ν̄f

(xi) =
∑
b�=f

μ
(t)
ν̄f→xi

(xi). (6b)

Upon the convergence of messages in (6), the final estimate
to the MAP inference problem is found by computing the
belief ω̄(xi) given by ω̄(xi) =

∑
f μ

(t)
ν̄b→xi

(xi). If each xi is
assigned with the value that maximizes its belief ω̄(xi) for a
set of possible values for xi, the best estimate is obtained using
x∗i = arg maxxi ω(xi). Then, the solution x∗ is constructed
by collecting all x∗i for the MAP optimization.

B. Graphical Representation

To handle a constrained optimization, a careful design of
graphical representation is essential. A factor graph proves
viable in various network optimizations [22], [37]. It is a
bipartite graph with two classes of variable and factor nodes,
which are associated with optimization variables and their
constraints in the optimization problem, respectively. Factor
functions are introduced to define individual component terms
appropriately in objective and constraint functions.

For the constrained formulation in (4), five factor functions
are defined to address the objective (4a) and the constraints
in (4b)-(4e). Each function is defined either to evaluate the
objective value for the maximization or to penalize the vio-
lation of individual constraints. First, Fa({xia}) is defined to
enforce the constraint in (4b) so that each user is driven to
choose a single BS as

Fa({xia}) =

{
−∞ if

∑
i∈I xia �= 1,

0 otherwise.
(7)

In addition, Gi({xia}, ui) is responsible for determining an
individual additive term of the objective function along with
constraints in (4c) and (4d) together, since these two functions
have the same input variables, which are associated with BS i.
Thus, Gi({xia}, ui) permits the output to satisfy user capacity

constraints along with the values of the objective function as

Gi({xia}, ui) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∞ if
∑

a∈A xia > Mi

or ui �= maxa∈A xia,

0 if
∑

a∈A xia = 0,
�

a∈A Riaxia

Pall(v,u1)
�

b∈A xib
otherwise.

(8)

On the other hand, the constraint in (4e) requires multiple
factor functions for its distributed processing. To be precise, v
in (4e) is a global parameter that corresponds to the number
of active BSs in the network. For a fully distributed operation,
individual BSs are aware of this value and estimates the value
denoted by v̂ via the cooperation among BSs. To facilitate
it, ui is split into two parts as zi1 =

∑i
k=1 uk and zi2 =∑B

k=i+1 uk. Since v = zi1 + zi2 =
∑B

k=1 uk for all i with
z0,1 = 0 and zB,2 = uB , Hi(zi1, zi2, ui) is defined as

Hi(zi1, zi2, v̂) =

{
−∞ if vi �= zi1 + zi2,

0 otherwise.
(9)

Furthermore, two factors Hi1(zi1, zi−1,1, ui) and
Hi2(zi2, zi−1,2, ui) enforce relationships of zi1 = zi−1,1 + ui

and zi−1,2 = zi2 + ui and are defined, respectively, by

Hi1(zi1, zi−1,1, ui) =

{
−∞ if zi1 �= zi−1,1 + ui,

0 otherwise,
(10)

Hi2(zi2, zi−1,2, ui) =

{
−∞ if zi−1,2 �= zi2 + ui,

0 otherwise.
(11)

The constrained problem in (4) can now be reformulated
into an unconstrained formulation for handling only with
factor functions (7)-(11) as

max
{xia},{zi1,zi2},{ui}

∑
i∈I

(
Gi({xia}, ui) +Hi1(zi1, zi−1,1, ui)

+Hi2(zi2, zi−1,2, ui) +Hi(zi1, zi2, ui)
)

+
∑
a∈A

Fa({xia}). (12)

Since the unconstrained formulation in (12) has purely an
additive objective function of several factor functions associ-
ated with only a subset of variables, it is favorable to proceed
with a distributed solving strategy by finding maximizers of
those factor functions independently and matching them to
form a consistent global solution over the graph. Note that
the output of any factor function is not finite unless the
associated constraint is satisfied, i.e., the input assignment
incurring the infinite output value is useless and automatically
excluded from the candidate for the solution. Likewise, any
assignment of variables resulting in a finite objective value can
be a feasible solution, and the largest finite objective value of
(12) consequently becomes the optimal solution. This sheds
a light on a decentralized strategy for the optimal solution.
The maximizers of individual factor functions are obtained
separately, and the final solution is identified by choosing a
consistent set of those solutions. Since the solutions of (4)
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Fig. 2. An example of the factor graph associated with HetNets of 4 BSs
and 4 users.

and (12) are identical, solving (12) is equivalent to find the
original solution.

The visualization of the factor graph is also important
in that it is involved with a practical deployment of the
distributed algorithm. For visual representation of the factor
graph, a circle normally denotes a variable, while a square
stands for a factor function. An edge is connected between
a circle and a square to indicate the membership of the
associated variable with the associated factor function. Fig. 2
illustrates an example of the factor graph for the case of four
BSs and four users using the above factor functions. The factor
graph consists of two subgraphs, each representing a user-BS
network and a BS network. Factor functions Gi(·) and Fa(·)
of the left-hand side are connected to variables in the i-th row
and the a-th column indicating user a and BS i, respectively.
In contrast, the right-hand side subgraph corresponds to the
BS network interconnected with neighboring BSs, where indi-
vidual BSs use their internal states and external information
transferred from neighboring BSs to obtain their own estimates
on the number of active BSs in the overall network. It is noted
that the factor graph in Fig. 2 is, in fact, not a physically
deployed structure. To describe a physical deployment of the
network, boxes represented in dashed line are introduced in
the factor graph, i.e., a network node associated with each box
shares states and messages related to all graph nodes that it
contains. Thus, variables xia are shared by two nodes, while all
other variables such as ui and vi are independently managed.

C. Message Definition

To derive a distributed algorithm using a belief propagation
framework, we first define messages. Since xia is binary and
associated with two factor functions Fa(·) and Gi(·), four dif-
ferent types of messages μxia→Fa(xia = x), μFa→xia(xia =
x), μxia→Gi(xia = x), and μGi→xia(xia = x) are neces-
sary for two different values of x ∈ {0, 1}. Furthermore,
additional six messages μui→Gi(ui = u), μGi→ui(ui = u),
μui→Hi1(ui = u), μHi1→ui(ui = u), μui→Hi2 (ui = u), and
μHi2→ui(ui = u) are denoted for another binary variable
ui with u ∈ {0, 1}. On the other hand, integer variables
zi1 and zi2 are associated with six messages denoted by
μzi1→Hi1 (zi1 = z), μHi1→zi1(zi1 = z), μzi2→Hi2(zi2 = z),

Fig. 3. Message definitions in the factor graph.

μHi2→zi2(zi2 = z), μzi1→Hi(zi1 = z), and μzi2→Hi(zi2 = y)
for zi1, zi2 ∈ {1, . . . , B}. Note that the physical deployment
leads to a reduction of some messages for unnecessary internal
message exchange. In addition, since variable v̂ is used as a
parameter, no message is associated with it.

For compact representations, we redefine the messages.
Fig. 3 depicts new definition of messages in the factor graph.
For a binary variable xia, the corresponding messages are
expressed as the differences between two messages associated
with the cases whether xia = 1 or not. Accordingly, the
redefined messages are given by

βia = μxia→Fa(xia = 1)− μxia→Fa(xia = 0),
ηia = μFa→xia(xia = 1)− μFa→xia(xia = 0),
ρia = μxia→Gi(xia = 1)− μxia→Gi(xia = 0),
αia = μGi→xia(xia = 1)− μGi→xia(xia = 0). (13)

These messages are used for identifying user association. In
contrast, the following messages for variable ui represent the
switch-off state given by

ρi = μui→Gi(ui = 1)− μui→Gi(ui = 0),
αi = μGi→ui(ui = 1)− μGi→ui(ui = 0). (14)

Also, the following messages about the switch-off state for
variable ui are exchanged with neighboring BSs in two ways
for k ∈ {1, 2} as

γik = μui→Hik
(ui = 1)− μui→Hik

(ui = 0),
ζik = μHik→ui(ui = 1)− μHik→ui(ui = 0). (15)

According to the underlying idea of belief propagation, the
above messages encode the information about whether BS i
is well-suited to serve users in the optimal configuration or
not. Since there are only two states for variables, it suffices
to know the difference between messages associated with two
opposite states for the decision on those variables. The com-
pact representations of the remaining messages are denoted
for k ∈ {1, 2} by

ψik(z) = μzik→Hi+1,k
(zik = z),

φik(z) = μHi+1,k→zik
(zik = z),

ϕik(z) = μzik→Hi(zik = z). (16)

In contrast to the messages associated with binary variables,
variables associated with (16) can take on nonbinary values,
and the differences are not used for simplification. The physi-
cal meaning of messages in (16) accounts for the contribution
of a subset of BSs to the objective value. In particular,
messages ψi1(z), φi1(z), and ϕi1(z) can be combined to
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estimate the objective value expected when z BSs out of
the BS group from BS 1 to BS i are in the operating state,
while messages ψi2(z), φi2(z), and ϕi2(z) correspond to the
contributions to the objective value by z active BSs from BS
i to BS B.

D. Derivation of Algorithms

We develop the message update rules based on belief
propagation. The user association algorithm is derived first.
To this end, we introduce the update rules for the messages
sent from a variable to a factor function first since their
calculation is mostly simpler than their counterparts. At a
variable node, an outgoing message is updated as the sum
of all incoming messages according to the max-sum based
message-passing algorithm in (6b). According to the factor
graph in Fig. 2, there are only two edges connected to variable
xia, and the outgoing messages are simply duplicates of the
corresponding incoming messages given by

βia = αia, ρia = ηia. (17)

Next, we derive the message update rules for messages
transferred from a factor function to a variable. These message
update rules involve the maximization of sums of the factor
function and the incoming sum message according to the
max-sum based message-update rule in (6a). The outgoing
message indicates the difference between the maximum objec-
tive value for the case where the associated constraint is
satisfied with variable xia set to 1 and for the same case but
xia set to 0, i.e., its sign can determine the preference of the
associated variable xia. For simple representation, two variable
sets Xa = {xia: i ∈ I} and Xi = {xia: a ∈ A} are defined,
and the message update rule for message ηia is derived as

ηia = μFa→xia(xia = 1)− μFa→xia(xia = 0)

= max
Xa\xia

(
Fa(xia = 1,Xa\xia) +

∑
j∈I\i

μxja→Fa(xja)
)

− max
Xa\xia

(
Fa(xia = 0,Xa\xia) +

∑
j∈I\i

μxja→Fa(xja)
)

=
∑

j∈I\i

μxja→Fa(0)

− max
j∈I\i

(
μxja→Fa(1) +

∑
k∈I\{i,j}

μxka→Fa(0)
)

= − max
j∈I\i

(
μxja→Fa(1)− μxja→Fa(0)

)
= − max

j∈I\i
βja. (18)

The output of Fa(xia,Xa\xia) is evaluated by fixing xia to
either 1 or 0 first and choosing other variables appropriately. Its
value is valid only when it takes a finite value. Since xia = 1
indicates that user a is associated with BS i, no other BS
can be chosen, i.e., the corresponding incoming message sum
is obviously

∑
j∈I\i μxja→Fa(0). On the other hand, in case

of xia = 0, user a chooses another BS instead of BS i.
The corresponding valid incoming message sum is different
from

∑
j∈I\i μxja→Fa(0) by a single message μxka→Fa(1) for

some k. Accordingly, its subtraction from the remaining part
simplifies the overall computation for ηia. The message update
rule in (18) provides a rule that user a chooses its serving
BS. If all incoming messages are negative, i.e., βia < 0,
the corresponding value of ηia becomes positive, implying
that no other BS can serve user a and the user accesses to
BS i.

We next develop the message update rule for αia that
addresses the factor function Gi(·). This message evaluates
an expected advantage in the objective function value when
user a is connected to BS i over the case when it is not
connected. Thus, the message value closely depends on the
energy consumption of the network, and a special consid-
eration about the total energy consumption can help the
improvement of the performance. To this end, we distinguish
two cases whether the macro BS is turned on or not, since
the operating energy consumption of the macro BS is much
larger than micro BSs. Let P (v, u1) denote the estimate on
the total energy consumption expressed in terms of the total
number of active BSs v and the status of the macro BS
u1. If the macro BS is turned on, i.e., u1 = 1, we have
P (v, 1) = (v − 1)(Pm

O + Pm
T ) + PM

O + PM
T . Otherwise, for

u1 = 0, the energy consumption is P (v, 0) = v(Pm
O + Pm

T ).
Defining a new operator max

s∈S
(l, θs) as the l-th largest value

among message input θs indexed with s ∈ S for node set S,
the message update rule for αia is presented in (19), shown at

αia = μGi→xia(xia = 1)− μGi→xia(xia = 0)

= max
u1

max
Xi\xia

(
Gi(xia = 1,Xi\xia, u1) +

∑
b∈A\a

μxib→Gi(xib) + μu1→Gi(u1)
)

−max
u1

max
Xi\xia

(
Gi(xia = 0,Xi\xia, u1) +

∑
b∈A\a

μxib→Gi(xib) + μu1→Gi(u1)
)

(19a)

= max
u1

max
(

Ria

P (v, u1)
,

Ria

2P (v, u1)
+ max

b∈A\a

(
1,

Rib

2P (v, u1)
+ ρib

)
, . . . ,

Ria

MiP (v, u1)
+

Mi−1∑
l=1

max
b∈A\a

(
l,

Rib

MiP (v, u1)
+ρib

))

−max
u1

max
(
− ρi, max

b∈A\a

(
1,

Rib

P (v, u1)
+ ρib

)
,

2∑
l=1

max
b∈A\a

(
l,

Rib

2P (v, u1)
+ ρib

)
, . . . ,

Mi∑
l=1

max
b∈A\a

(
l,

Rib

MiP (v, u1)
+ ρib

))
(19b)

= max(Aia(1, P (v, 1)),Aia(1, P (v, 0)))−max(Aia(0, P (v, 0)),Aia(0, P (v, 0))), (19c)
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the bottom of the previous page, and Aia(xia, p) is a function
of incoming messages with two input parameters of the binary
state xia and the energy consumption p, introduced for simple
representation, given by (20), shown at the bottom of the page.
Note that, in (19a), the definition of message αia is given
according to (13) as the difference between the contributions
of the objective value whether the association between BS i
and user a is made or not. The objective value for an individual
case is calculated using the max-sum based message-update
rule in (6a). Although the total energy consumption P (v, u1)
is a parameter rather than a message, its value may change
abruptly depending on whether the macro BS is turned on or
not. For proper message update operations, these two cases
are considered separately in the message calculation. Thus,
two distinct message values are evaluated according to the
state of the macro BS and compared to find the most likely
message value in (19b).

Note that the simplified form of message αia in (19c) is
evaluated by the difference between preferences that BS i
serves user a or not, regardless of the state of the macro BS.
However, the state of the macro BS proves crucial for the
optimal decision since the total energy consumption highly
depends on the status of the macro BS. To manifest this,
message αia is modified to distinguish the cases whether the
macro BS is turned on or not separately and compare them
for a new message.

Two differences associated with the states of the macro BS
are computed in terms of

Δia(1) = Aia(1, P (1))−Aia(0, P (1)),
Δia(0) = Aia(1, P (0))−Aia(0, P (0)). (21)

These quantities can be interpreted as the preferences of the
link between BS i and user a over the unconnected link when
the macro BS is turned on or off, respectively. Thus, it is
proper to choose a new form of message αia as the preference
of the largest absolute value, and the resulting message is
obtained as

αia = sgn(Δia(1) + Δia(0))max(|Δia(1)|, |Δia(0)|). (22)

This simplification of message αia leads to the comparison
between two out of four possible cases and diminishes the
range of the message value, i.e., the decreased variation in
αia. However, it helps obtaining a final solution with better
reliability, since it provides more conservative evidences to
make a decision on the state of xia.

The messages transferred over the interface between user
association and the BS network are derived in the following.
As with the previous case, the outgoing message from variable
ui is the sum of all incoming messages simply given as

ρi = ζi1 + ζi2, γik = αi, k ∈ {1, 2}. (23)

Note that γik should have been defined as γik = αi + ζi,3−k

since ui has three neighboring nodes, all having associated
messages of αi, ζi,1, and ζi,2. Since γik is interpreted as
an estimate on the state of BS i, it strongly depends on αi

rather than ζi,3−k. Thus, adding ζi,3−k to αi contributes little
to estimate γik, and identifying ui benefits from independent
estimates of zi1 and zi2, which remain uncorrelated with each
other. Therefore, ζi,3−k can be ignored in computing γik .

The outgoing message αi emanating from the factor func-
tion Gi(·) is evaluated using

αi = μGi→ui(ui = 1)− μGi→ui(ui = 0)

= max
Xi

(
Gi(Xi, ui = 1) +

∑
a∈A

μxia→Gi(xia)
)

−max
Xi

(
Gi(Xi, ui = 0) +

∑
a∈A

μxia→Gi(xia)
)

= max
u1

max
(

max
a∈A

(
1,

Ria

P (v, u1)
+ ρia

)
,

2∑
l=1

max
a∈A

(
l,

Ria

2P (v, u1)
+ ρia

)
, . . . ,

Mi∑
l=1

max
a∈A

(
l,

Ria

MiP (v, u1)
+ ρia

))

= max(Ai(P (v, 1)),Ai(P (v, 0))), (24)

where Ai(p) is a new function defined as

Ai(p) = max
(

max
a∈A

(
1,
Ria

p
+ ρia

)
,

2∑
l=1

max
a∈A

(
l,
Ria

2p
+ ρia

)
,

. . . ,

Mi∑
l=1

max
a∈A

(
l,
Ria

Mip
+ ρia

))
, (25)

and μGi→ui(ui = k) is also calculated for k = 0, 1 using the
max-sum based message update rule in (6a). Note that message
μGi→ui(ui = 0) simply becomes zero since BS i is turned off
and no user is allowed to associate with BS i. Similarly with
αia, αi addresses two different cases based on the state of
the macro BS which may make the total energy consumption
change abruptly. Message αi conveys the preference between
the operating and sleeping modes of BS i. Such information
is simply duplicated into γi1 and γi2 and transferred to the BS
network for the identification of the operating BS population.

Finally, we examine the message-update rules for the census
of active BSs in the BS network. The BS network includes
two trellises that expand in the opposite directions with the
two-fold objective of estimating the total number of active
BSs in the entire network and forcing each BS to switch
on and off for achieving the best energy efficient network
configuration. To this purpose, each BS exchanges two types

Aia(xia, p) = max
((Ria

p
+ ρi

)
xia − ρi,

Ria

(xia + 1)p
+ max

b∈A\a

(
1,

Rib

(xia + 1)p
+ ρib

)
,

Ria

(xia + 2)p
+

2∑
l=1

max
b∈A\a

(
l,

Rib

(xia + 2)p
+ ρib

)
, . . . ,

Ria

Mip
+

Mi−xia∑
l=1

max
b∈A\a

(
l,
Rib

Mip
+ ρib

))
. (20a)
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of messages corresponding to two opposite directions with
neighboring BSs. Since this challenge falls into an optimiza-
tion task, we resort to the max-sum based message-passing
algorithm in (6). Therefore, the message calculation for the
BS network boils down to a forward-backward algorithm such
as BCJR algorithm [33]. Once the input messages obtained
by user association are applied from individual BSs, each BS
calculates new messages, such as ψi1(·), ψi2(·), φi1(·), and
φi2(·), and passes them to neighboring BSs in two directions
of interconnecting edges. Two messages ψi1(·) and ψi2(·) are
referred to as the forward messages since those are passed
to the adjacent BS with the index of the increasing order,
while φi1 and φi2 are called the backward messages for
their transfer direction corresponding to the index of the
decreasing order. Since the relationship between adjacent BSs
are zi1 = zi−1,1 + ui and zi−1,2 = zi2 + ui, two trellises
are simply constructed to represent two different accumulation
operations for the number of active BSs. The resulting outputs
of this forward-backward algorithm are the estimates on zi1

and zi2 along with the preference for the value of each ui

fed back to the user association network. Also, the networks
that estimate zi1 and zi2 are referred to as the forward and
backward network, respectively, according to the directions of
the state transition.

The corresponding forward and backward messages are
expressed by

ψi1(z) = max(ψi−1,1(z), ψi−1,1(z − 1) + γi1),
φi1(z) = max(φi+1,1(z), φi+1,1(z + 1) + γi+1,1),
ψi2(z) = max(ψi−1,2(z), ψi−1,2(z + 1) + γi−1,2),
φi2(z) = max(φi+1,2(z), φi+1,2(z − 1) + γi2). (26)

Thus, ψi1(z) and φi2(z) indicate the state transition caused
by the increment of the number of active BSs, while φi1(z)
and ψi2(z) account for the decrement of the number of active
BSs according to the state of the ith BS.

To estimate the total number of active BSs using the
information in (26), BS i computes the preferences for zi1

and zi2, representing the number of active BSs in the index
ranges of {1, . . . , i} and {i+ 1, . . . , B}, respectively, using

ϕi1(z) = max(φi+1,1(z), φi+1,1(z + 1) + γi+1,1),
ϕi2(z) = max(φi+1,2(z), φi+1,2(z − 1) + γi2). (27)

Note that ϕi1(z) and ϕi2(z) are the objective values expected
from the information transferred from the forward and back-
ward networks. Based on these messages in (27), the total
number of active BSs is predicted at BS i as

v̂ = arg max1≤v≤B max1≤z≤v(ϕi1(z) + ϕi2(v − z)),(28)

and becomes identical among all BSs. Furthermore, messages
ζi1 and ζi2, which inform BS i whether it should be turned
on or off in the optimal solution, are calculated at BS i as

ζi1 = max
z

(φi1(z + 1) + ψi−1,1(z))

−max
z

(φi1(z) + ψi−1,1(z)),

ζi2 = max
z

(φi2(z) + ψi−1,2(z + 1))

−max
z

(φi2(z) + ψi−1,2(z)). (29)

To determine the switch-off state of BS i, message ρi is simply
evaluated as their sum given by ρi = ζi1 + ζi2. Thus, its
positive value indicates that it is better to turn on BS i to
assure that all network users can be served properly.

Although the above technique provides an efficient way of
identifying the total number of operating BSs v and the state
of BS i, it does not necessarily optimize the objective function
directly. To maximize the network-wide EE, the algorithm
minimizes the value of the denominator, while maximizing
the numerator. Although the value of v is kept as small
as possible, the total throughput is not likely to have a
monotonic change with respect to v, and the network-wide
EE becomes sensitive to the value of v. To this end, trellises,
which prove versatile in finding an efficient discrete value for
distributed optimization problems [22], [34], are employed for
identifying the optimal value of v in the BS network. The
trellis operations are configured for each v ∈ {1, . . . , B} to
force each BS to switch on and off to satisfy the total number
of active BSs. Meanwhile, the best value of v̂ is searched
simultaneously among the corresponding results. To enforce
such an optimization feature, the initialization of (26) at both
ends of the trellises is applied as

ψB1(z), φB1(z) =

{
−∞ if z �= v

0 otherwise,

ψ12(z), φ12(z) =

{
−∞ if z �= B

0 otherwise.
(30)

Although message updates and transfers are designed to
conduct normally one by one at each single iteration, we can
construct a protocol that schedules the overall algorithm as
the BCJR algorithm proceeds: The forward and backward
trellis searches run first in a row from the macro BS (BS
1) to BS B and vice versa. Subsequently, each BS collects
the corresponding messages to estimate the total number of
active BSs and its optimal state ui for the use of the optimal
user association without the aid of any centralized manage-
ment. A major advantage of this approach is that the global
optimality of the solution is guaranteed with the current input
from BSs since the BS network is tree-like. According to the
factor graph structure in Fig. 2, variable nodes associated with
vi and ρi separate the BS network from the user association
graph. Once v̂ and ρi are reliably determined, the conditional
independence [34] holds for the results between BS network
and user association. This is likely to make outgoing messages
from BS robust and the convergence behavior of the belief
propagation for user association is improved.

The overall messages are updated in each single iteration at
the network using

α
(t)
ia = sgn

(
A(t)

ia (1, P (1))−A(t)
ia (0, P (1))

+A(t)
ia (1, P (0))−A(t)

ia (0, P (0))
)
×

max
(
|A(t)

ia (1, P (1))−A(t)
ia (0, P (1))|,

|A(t)
ia (1, P (0))−A(t)

ia (0, P (0))|
)
, (31)
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ρ
(t+1)
ia = − max

j∈I\i
α

(t)
ja . (32)

Also, the BS network updates the remaining messages as

α
(t)
i = max(A(t)

i (P (1)),A(t)
i (P (0))), (33)

ζ
(t)
ik = max

zik

(φ(t)
ik (zik + 1) + ψ

(t)
i−1,k(zik))

−max
zik

(φ(t)
ik (zik) + ψ

(t)
i−1,k(zik)), (34)

ψ
(t)
ik (zik) = max

zik

(ψ(t)
i−1,k(zik),

ψ
(t)
i−1,k(zik + (−1)k) + γ

(t)
i+1−k,k), (35)

φ
(t)
ik (zik) = max

zik

(φ(t)
i+1,k(zik),

φ
(t)
i+1,k(zik − (−1)k) + γ

(t)
i+2−k,k), (36)

ρ
(t)
i = ζ

(t)
i1 + ζ

(t)
i2 , (37)

where A(t)
ia (·) and A(t)

i (·) denote the value obtained using the
set of input message ρ(t)

ia updated at the t-th iteration. Note that
all message values are evaluated with simple combinations of
arithmetic operations only.

E. Implementation Issues

This subsection briefly discusses the complexity and con-
vergence behaviors of the developed algorithm. A glance at
the computational rules presented in (31)-(37) reveals that
the evaluation of α

(t)
ia in (31) has dominant contributions

to the overall computational efforts, although the overall
computational rules are divided into three parts: user message
updates, BS message updates, and BS trellises. To see this
more carefully, at users’ side, each user utilizes at most B
different input messages from neighboring BSs to compute
ρ
(t+1)
ia , and the complexity becomes O(B) which is strictly

less than O(N). At BSs’ side, each BS calculates α
(t)
ia to

determine the user association. This operation involves sorting
at most Mi values obtained by adding the corresponding
different messages and takes O(Mi logMi) operations. Since
there are Mi different values to be compared in the calculation,
the overall message computation requires O(M2

i logMi) at
each BS. When predicting the number of active BSs, each
BS is responsible for the calculation of messages ψ(t)

ik (zik)
and φ(t)

ik (zik) using the incoming messages from neighboring
BSs. Accordingly, the complexity of estimating the number of
active BSs becomes O(M) for each BS. Thus, the overall
complexity mainly depends on the calculation of α(t)

ia and
amounts to O(M2

i logMi) for a single node in a single
iteration. Considering the distributed nature of the algorithm,
this amount of computational efforts is readily seen affordable.

In the proposed algorithm, to help improving the conver-
gence property and numerical stability, a damping technique
called the tree-reweighted message-passing algorithm [37] is
employed. In this technique, a new version of messages α̃(t)

ia

and ρ̃(t)
ia are obtained by evaluating the linear combinations of

the result of the message updated rule and the previous input
messages with coefficient ε (0 ≤ ε ≤ 1) as

α̃
(t)
ia = εα

(t)
ia − (1 − ε)ρ̃(t)

ia (38)

ρ̃
(t+1)
ia = ερ

(t+1)
ia − (1− ε)α̃(t)

ia . (39)

Algorithm 1 Distributed Energy Efficiency Management
Algorithm

Set t← 0 and ρ̃(t)
ia = 0 for all (i, a). All BSs are turned on.

Repeat
BS i updates α̃(t)

ia using (38) for each a ∈ N (i), and sends
it back to user a.

User a updates ρ̃(t)
ia using (39) for each i ∈ N (a), and

sends it back to BS i.
All BSs run forward-backward updates using (33)-(36).
Individual BSs calculate the sum of (34) to obtain ρ(t)

i and
use (35) to obtain v̂.

Individual BSs turn off and release users if the sign of ρ(t)
i

is negative.
Set t← t+ 1.

Until convergence or t reaches titer.
User a uses (40) to determine its serving BS C̃

(t)
a .

This approach enhances the convergence behavior by accept-
ing some information about the previous values. At each
iteration, user a makes a tentative choice for BS as

C̃(t)
a = argmaxi∈I(α̃(t)

ia + ρ̃
(t)
ia ). (40)

Thus, upon convergence of the sum of messages, user a is
associated with BS C̃

(t)
a . Algorithm 1 overviews the overall

distributed energy efficiency management algorithm.
The optimality of the solution with the converged messages

is closely related to the structure of the factor graph. In fact,
by definition, the message updates rules of the developed algo-
rithm ensure a necessary condition that any optimal solution
of the problem in (4) satisfies. This indicates that, once each
message takes a fixed value, i.e., converges to a limit, the
equations representing the message updates rules hold and the
solution for the messages becomes the optimum. Therefore,
it is important to make the algorithm converge within a finite
number of iterations. The optimality established in this step is
valid only when the problem in (4) has a unique solution, since
multiple solutions of the problem may make the messages
oscillate. Since largely scattered throughput values of Ria

may lead to distinct objective values for different feasible
assignments of variables, the corresponding solution is highly
likely to be unique. In addition, the trellis-based optimization
solution for BS network provides the best solution for a given
configuration. By virtue of the factor graph structure and the
quality of those solutions, the convergence property of user
association can be further enhanced. A detailed description on
the convergence behavior will be discussed with simulation
results in the following section.

We consider a practical deployment protocol for the distrib-
uted energy efficiency management. Initially, all BSs broadcast
their specific reference signals at their periodical cell selec-
tion process [38]. A BS in an idle state awakes to do this
step. Users receiving multiple reference signals measure the
signal quality to report the received signal received power
(RSRP) [38] from their neighboring BSs. Since individual
BSs and users can calculate system parameters based on
the RSRP, Algorithm 1 can be carried out in a distributed
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TABLE I

SIMULATION SETUP

manner over the network. Thus, message-passing operations
for user association commence at individual BSs and users
using (38) and (39), respectively. In addition, each BS runs
the BS trellis operation using (33)-(36) over the BS network.
For this trellis operation, messages are exchanged through a
dedicated backhaul network [35]. Once the algorithm reaches
the convergence, individual BSs determine whether to remain
active or switched off. A BS which decides to switch off
releases its users and deactivates some functions for energy-
saving. This procedure repeats periodically.

IV. NUMERICAL RESULTS

In this section, we evaluate the developed algorithm in
a two-tier HetNet consisting of one macrocell and multiple
microcells in a rectangular region. The macro BS is located
at the center of the region. The microcells are distributed
at random so that mean coordinates of individual microcells
are equally separated and apart from a given distance from
the macro BS. Their actual positions are determined by
Gaussian distributions with 5 m deviation. To reflect a rela-
tively dynamic user distribution, users are initially distributed
uniformly and are in a Brownian motion with the average
displacement of 10 m for consecutive simulation instances.
User coordinates are wrapped around so that the population
within the simulation domain is preserved. We set M1 to be
twice greater than Mi, (i = 2, . . . , B).

The proposed message passing (MP) algorithm is com-
pared with other existing algorithms which determine operat-
ing/sleeping BSs and user association. The conventional algo-
rithms are briefly described here. A naive approach to find the
user association relies on the use of channel state information
itself by utilizing the fact that the channel gain is somewhat
proportional to the throughput and inversely proportional to the
energy consumption. Thus, the sum of channel states algorithm
denoted by SC [21] lets each BS select users so that the sum
of its supporting users’ channel states is maximized, i.e., a BS
updates the sum of downlink channel states by incrementing
the number of supported users until reaching the limit. Then,
a subset of BSs with the largest values is chosen to associate
their nearby users. Also, the user channel selection algorithm
denoted by UC [14] lets each user decide the association
based on channel state information. If the selected BS is fully
occupied by other users, the user chooses the next best BS.
In addition, the individual energy efficiency algorithm denoted
by IE evaluates the sum of individual BS’s EEs to identify the
user association in the algorithm [6], [15], [16]. Finally, the

Fig. 4. Snapshots of user association for different numbers of users.

primal-dual decomposition algorithm denoted by PD is based
on a distributed technique of primal-dual decomposition [6],
[39], [40]. The simulation is carried out with 1000 independent
instances of user location configurations, and the results are
averaged out. Table I summarizes the detailed description of
the simulation setup.

Fig. 4 illustrates two instances of user association results
of the proposed algorithm for 20 and 60 user populations.
The macro BS, micro BSs and users are represented by a
diamond, stars and circles, respectively. When the number
of users is 20, the proposed MP algorithm decides to turn
off the macro BS and two micro BSs, since nearby micro
BSs can support all users. In such a case, active micro BSs
accept relatively a large number of users. The resulting EE
amounts to 6 bits/Hz/J. In contrast, for the case of 60 users, the
MP algorithm achieves the network-wide EE of 3.6 bits/Hz/J.
All BSs including the macro BS are turned on to provide
connections to nearby users almost up to their user limits to
avoid the inefficiency in energy consumption. As a result, the
EE decreases when all BSs are turned on, since the operating
energy of the macro BS is considerable. This indicates that the
management of the number of active BSs is crucial to the EE
maximization.
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Fig. 5. Cumulative distribution functions of EE (N = 20).

Fig. 6. Average EE with respect to the number of users in the network
(micro BSs supporting total of 100 users).

Fig. 5 compares the cumulative distribution function (CDF)
of the EE obtained by various algorithms in the case of
N = 20. Since the rightmost curve obviously indicates the
best performance, it is clear that the proposed algorithm
outperforms other schemes consistently. The UC algorithm
produces a moderate worst-case EE of 2.2 bits/Hz/J, since the
macro BS is mostly turned on and most users try to access to
the macro BS, thereby resulting in a large population group
with relatively uniform EE. On the other hand, the SC and
IE algorithms exhibit the worst-case EE of 1.2 bits/Hz/J. In
contrast, the proposed MP algorithm shows the minimum EE
value of 5.6 bits/Hz/J which is the highest among all schemes.
To show how good the MP algorithm performs, the global
optimal solution evaluated using exhaustive search (ES) is
presented together. The result reveals that the MP has identical
performance with the global optimum.

Fig. 6 presents the average EE performance in terms of
the number of users with maximum users, and the number
of users that the micro BS can support is set to 100. The EE
decreases as the number of user connections increases. The
proposed algorithm exhibits more than 17% performance gain
over the PD algorithm which shows the best performance
among existing algorithms. The gap narrows gradually with

Fig. 7. Average EE with respect to the cell coverage.

Fig. 8. Average EE with respect to the BS density.

the increased users since a larger user population naturally
reduces the EE value for most schemes. If the number
of users goes beyond the micro BS’s supporting capacity,
the proposed algorithm turns on the macro BS and the
energy consumption increases abruptly, thereby diminishing
the resulting EE. Nevertheless, the MP algorithm still
demonstrates a performance gain over other methods since a
very efficient user association result is identified.

Fig. 7 compares the relationship between the EE and the
cell coverage characterized by the average distance between
the macro BS and micro BSs. The results show consistent
trends of a monotonic EE decrease for the cell radius growth
with distinct gaps between the proposed algorithm and other
schemes. As the cell coverage increases, the propagation dis-
tance between a user and a BS becomes large. Thus, the sum
throughput decreases while the energy consumption increases
slightly faster, thereby reducing the total EE with a slow decay.
This, in fact, indicates that sophisticated algorithms including
the MP and PD algorithm can achieve better performance
as the cell coverage becomes smaller, since there are greater
chances for optimization with the average user-BS distance.

Fig. 8 depicts the average EE performance in terms of the
number of BSs. The average distance between the macro BS
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Fig. 9. Convergence behavior of the average objective function.

and micro BS is set to 100 m. For the fixed number of users,
as the number of BSs increases, the network EE increases
monotonically since interference is managed efficiently and
the average distance of a user-BS pair is shortened if additional
BSs are available. If the user population grows in the network,
the interference among links becomes large and additional
BSs including the macro BS begin to operate. Thus, the sum
throughput decreases and the energy consumption increases,
thereby dropping the network EE. The proposed MP algorithm
shows performance gains over other techniques for both user
population cases.

Fig. 9 exhibits the convergence property of the MP algo-
rithm by tracking the change of the average objective value
with respect to the number of iterations. The difference
calculated at consecutive iterations is often considered as an
importance measure in the analytical guarantee for convergent
algorithms [41]. Instead of a mathematical proof, the average
objective value is examined to assure the existence of a fixed
point in the limit. The objective functions are evaluated with
various values of the damping factor at each iteration and
averaged over 1000 random instances. Initially, the objective
values for all cases reach within the first 5 iterations up to the
overestimated objective point and then show different decreas-
ing dynamics with damping parameters. As it becomes small,
the objective value has frequent changes. This indicates that
the choice of a small value provides an improved quality of a
solution, while a large value leads to accelerated convergence.
We have obtained satisfactory performance by setting ε = 0.7
in convergence and performance.

V. CONCLUSION

This article investigates a two-tier HetNet system to max-
imize the EE. A distributed algorithm that handles the user
association by jointly optimizing the sum throughput and
power saving is developed based on belief propagation. The
developed algorithm appropriately configures the on-off states
of the BSs with the joint consideration of the user association
that achieves the best network sum throughput. To do so,
the belief propagation algorithm conducts a clustering task to

obtain the user association. Based on the association results,
the BSs compete for their on-off states via trellis-based
optimization over the BS network. We demonstrate that the
proposed approach for the HetNet is practical in terms of
implementation issues, the convergence and the distributed
operation. Simulation results verify that the proposed algo-
rithm improves the average EE performance by more than
25% over other conventional strategies.
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