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Abstract— In this paper, we propose a new spatial multiplexing
scheme for transmission over flat-fading multiple-input multiple-
output (MIMO) channels, which allows a simple maximum-
likelihood decoding at the receiver with small feedback informa-
tion. We begin with a real-valued representation of the complex-
valued system model and show that we can achieve orthogonality
between transmitted signals by applying a proper rotation to
transmitted symbols. Based on the minimum Euclidean distance
between received vectors, we also present a simple antenna
selection metric for the proposed spatial multiplexing systems.
Simulation results demonstrate that our spatial multiplexing
system performs close to the optimum closed loop system with
much reduced complexity and feedback overhead.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems provide
a very promising means to increase the spectral efficiency
for wireless systems. Especially, spatial multiplexing schemes
enable extremely high spectral efficiencies by transmitting
independent streams of data simultaneously through multiple
transmit antennas [1] [2]. Assuming perfect channel knowl-
edge at the receiver, the potential gains of using the MIMO
systems are well presented in [3] and [4].

In order to fully exploit the potential of multiple antennas
and achieve the promised capacity, we can apply full channel
state information (CSI) knowledge to the transmit side to
optimize the transmission scheme according to current channel
conditions. Most work on these closed-loop MIMO systems is
carried out by obtaining singular value decomposition (SVD)
of the channel transfer matrix [5] [6]. More realistic assump-
tions about CSI at the transmitter and receiver can impact the
potential channel gains of MIMO systems [7] [8]. Another
drawback of precoding systems is that the SVD operation
requires high computational complexity and is known to be
numerically sensitive [9].

To address these issues, the transmitter with limited feed-
back information in a communication system tries to utilize
the system resources more efficiently [10]. Precoding based
on the limited feedback has been proposed in [11], where
the transmit precoder is chosen from a finite set of precoding
matrices, called codebook, known to both the receiver and
transmitter. The receiver selects the optimal precoder from
the codebook with a selection criterion based on the current
CSI and reports the index of this matrix to the transmitter over
a limited feedback channel.
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In this paper, we propose a new spatial multiplexing scheme
for a closed loop MIMO system which allows a simple
maximum-likelihood (ML) receiver. Our interest is restricted
to spatial multiplexing systems transmitting two independent
data streams, which are important in practical wireless sys-
tem designs. We first present a new orthogonalized spatial
multiplexing scheme with reduced complexity and overhead.
The ML decoding (MLD) is optimal for detecting symbols in
MIMO spatial multiplexing (SM) systems. However, its com-
putational complexity becomes exponential with the number
of transmit antennas and the size of constellations. In order
to reduce the processing complexity of an ML receiver, we
propose a new SM system which requires only a single phase
value from the receiver.

Next we extend the proposed spatial multiplexing scheme
to systems with a larger number of transmit antennas. When
there are more than two transmit antennas, our proposed
scheme needs to choose the two best antennas to maxi-
mize the performance. We consider a criterion based on
the minimum Euclidean distance for selecting the optimal
subset of multiple transmit antennas in the proposed spatial
multiplexing systems, since the Euclidean distance between
received vectors accounts for the symbol error probability
[12]. In the simulation section, we compare the performance
of the proposed scheme with other closed loop systems such
as the optimal unitary precoding [11] and the optimal linear
precoding [6] over flat-fading quasistatic channels in terms of
bit error rate (BER).

The organization of the paper is as follows: Section II
presents the system model and reviews conventional precoding
schemes. In Section III, we propose a new spatial multiplexing
scheme and show that the proposed transmission scheme
attains single-symbol decodability at the receiver. Section
IV illustrates the antenna selection method based on the
Euclidean distance between received vectors in the proposed
spatial multiplexing system. In Section V, the simulation
results are presented comparing the proposed method with
other precoding schemes. Finally, the paper is terminated with
conclusions in Section VI.

II. SYSTEM DESCRIPTIONS

In this section, we consider a spatial multiplexing system
with Mt transmit and Mr receive antennas. We assume that
the elements of the MIMO channel matrix are obtained from
an independent and identically distributed (i.i.d) complex
Gaussian distribution. Each channel realization is assumed to
be known at the receiver. Throughout this paper, normal letters
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Fig. 1. Schematic diagram of transmission from Mt transmit antennas in
closed-loop precoding MIMO systems

represent scalar quantities, boldface letters indicate vectors
and boldface uppercase letters designate matrices. With a bar
accounting for complex variables, for any complex notation c,
we denote the real and imaginary part of c by �[c] and �[c],
respectively.

Let us define the Mt-dimensional complex transmitted
signal vector x, and the Mr-dimensional complex received
signal vector y. Then the complex received signal is given by

y = Hx + n (1)

where n is a complex Gaussian noise vector with covariance
matrix σ2

nIMr
and Id indicates an identity matrix of size d.

Here the channel response matrix can be written as

H =




h11 · · · h1Mt

...
. . .

...
hMr1 · · · hMrMt




where hji represents the channel response between the ith
transmit and the jth receive antenna.

In what follows, we briefly review other two closed loop
schemes. The system consists of a spatial demultiplexer that
produces M independent data streams and a spatial precoder
that maps these M streams to Mt transmit antennas (M ≤
Mt), as shown in Figure 1. Here F denotes the Mt by M
precoding matrix and Fij indicates the (i, j) element of F.
First, we consider the unitary precoding scheme proposed in
[11] for limited feedback cases. Denoting U(m,n) as a set of
m by n matrices with orthogonal columns, the singular value
decomposition of H is given by

H = UΣV
∗

(2)

where U ∈ U(Mr,Mr), V ∈ U(Mt,Mt), and Σ denotes an
Mr by Mt diagonal matrix with the kth singular value of H
at entry (k,k).

Then the optimal precoder Fopt ∈ U(Mt,M) is given
by Fopt = VM [11], where VM is a matrix constructed
from the first M columns of V. We refer to this precoder
as Optimal Unitary Precoding (OUP).

Second, for the case of full CSI at the transmitter, we
consider the optimum linear precoder using the minimum
mean squared error (MMSE) criterion subject to a transmitted

power constraint. Then the optimal linear precoder can be
described by Fopt = VMΦf with the diagonal matrix Φf

given by [6]

Φf =
(

σn√
Esµ

Σ−1
M − σ2

n

Es
Σ−2

M

)1/2

+

(3)

where (·)+ indicates that negative elements of the matrix are
replaced by zero, µ is a parameter computed according to the
total transmit power constraint, and ΣM represents the M×M
upper-left matrix of the diagonal matrix Σ. We denote this
precoder as Optimal Linear Precoding (OLP).

The main problem with these approaches in (2) and (3) is
that the conventional precodings require high complexity pro-
cessing associated with SVD and high feedback overhead in
sending information on the channel or precoding matrices. In
the following sections, we propose a new spatial multiplexing
scheme with reduced complexity and overhead.

III. NEW SPATIAL MULTIPLEXING SCHEME

In this section, we present an orthogonal spatial multiplex-
ing (OSM) scheme based on a single phase value and show
how to simplify the ML detection for the spatial multiplexing
systems with two transmit antennas (Mt = 2).

Let Q denote a signal constellation of size Mc. Given the
channel matrix H, the ML estimate of the transmitted vector
x is given by

x̂ = [x̂1 x̂2]t = arg min
x∈Q2

∣∣∣∣y − Hx
∣∣∣∣2 (4)

where [·]t indicates the transpose of a vector or matrix and
||·|| denotes the Euclidean norm. Note that the ML decoding
problem is exponential in the number of constellation points.

Equivalently, the real-valued representation of the system
(1) can be written as [13]

y =
[ �[y]

�[y]

]
= Hx + n (5)

where x =
[ �[xt] �[xt]

]t
, n =

[ �[nt] �[nt]
]t

, and

H =
[ �[H] −�[H]

�[H] �[H]

]
= [ h1 h2 h3 h4 ]. (6)

Here n is a real Gaussian noise vector with covariance matrix
σ2

n

2 I2Mr
.

From the real-valued representation of the channel matrix
in (6), it is easy to see that the column vectors h1 and h2 are
orthogonal to h3 and h4, respectively (h1⊥h3 and h2⊥h4).
We also notice that h1 ·h2 = h3 ·h4 and h1 ·h4 = −h2 ·h3,
where hi ·hj denotes the inner (dot) product between vectors
hi and hj . For the rest of this section, we will see that these
properties are essential to the development of the new spatial
multiplexing scheme.

Based on the real-valued representation in (5), the ML
solution x̂ to (4) can be alternatively obtained by

x̂ = [x̂1 x̂2]t = arg min
x∈Q2

∣∣∣∣
∣∣∣∣y − H

[ �[x]
�[x]

]∣∣∣∣
∣∣∣∣
2

. (7)



Note that the ML estimation metric (4) and (7) require the
same amount of computation.

In what follows, we present the OSM to simplify the ML
decoding. To achieve this goal, we encode the two transmitted
symbols as

F(x, θ) =
[

1 0
0 exp (jθ)

]
s(x) (8)

where θ is the rotation phase angle applied to the second
antenna and

s(x) �
[ �[x1] + j�[x2]

�[x1] + j�[x2]

]
.

With the above precoding, the original system model in (1)
is transformed into

y = HF(x, θ) + n = Hθs(x) + n (9)

where

Hθ = H
[

1 0
0 exp (jθ)

]
.

Here Hθ accounts for the effective channel matrix for s(x).
Then, the real-valued system model corresponding to (9)

can be represented as

y =
[ �[y]

�[y]

]
=

[ �[Hθ] −�[Hθ]
�[Hθ] �[Hθ]

][ �[s(x)]
�[s(x)]

]
+

[ �[n]
�[n]

]

= [ hθ
1 hθ

2 hθ
3 hθ

4 ]




�[x1]
�[x1]
�[x2]
�[x2]


 + n (10)

where the real column vector hθ
i of length 2Mr denotes the

ith column of the effective real-valued channel matrix. Recall
that the column vectors hθ

1 and hθ
2 are orthogonal to hθ

3

and hθ
4, respectively, regardless of θ. In this case, the spatial

multiplexing scheme becomes fully orthogonal if and only if
hθ

1 ⊥ hθ
4 and hθ

2 ⊥ hθ
3.

Denoting h
θ

ij as the (i, j)th entry of Hθ, we obtain the inner
product between hθ

1 and hθ
4 as

hθ
1 · hθ

4 = (hθ
1)

t
hθ

4

= −
Mr∑

m=1

�[h
θ

m1]�[h
θ

m2]+
Mr∑

m=1

�[h
θ

m1]�[h
θ

m2].(11)

Since hθ
2 · hθ

3 = −hθ
1 · hθ

4, the orthogonality of the
spatial multiplexing can be achieved as long as Equation (11)
becomes zero. After trigonometric computations on (11), the
rotation angle for the orthogonality between hθ

1 and hθ
4 (or

hθ
2 and hθ

3) can be written as

θ = tan−1

(
B

A

)
± π

2
(12)

where A =
∑Mr

m=1 |hm1||hm2| sin
(
∠hm2 − ∠hm1

)
and B =∑Mr

m=1 |hm1||hm2| cos
(
∠hm2 − ∠hm1

)
. Here | · | and ∠ in-

dicate the magnitude and the phase of a complex number,
respectively.

Fig. 2. Block diagram of a limited feedback MIMO system

Using the rotation angle of (12), we can achieve the
orthogonality between transmitted signals in (10) where the
subspace spanned by hθ

1 and hθ
2 becomes orthogonal to that

spanned by hθ
3 and hθ

4. As shown in [14], utilizing this
orthogonality, the ML solution x̂ = [x̂1 x̂2]t in Equation (7)
can be individually given by

x̂1 = arg min
x∈Q

∣∣∣∣
∣∣∣∣y − [ hθ

1 hθ
2 ]

[ �[x]
�[x]

]∣∣∣∣
∣∣∣∣
2

(13)

and

x̂2 = arg min
x∈Q

∣∣∣∣
∣∣∣∣y − [ hθ

3 hθ
4 ]

[ �[x]
�[x]

]∣∣∣∣
∣∣∣∣
2

. (14)

Note that in determining x̂1 and x̂2 in (13) and (14), the size
of the search set reduces to Q. These ML decoding equations
show that with the proposed transmission scheme, the ML
decoding at the receiver can be done by searching for a single
symbol (called single-symbol decodable), while the traditional
ML decoding in (4) requires searching a pair of symbols.
Therefore, in our proposed spatial multiplexing system, the
decoding complexity reduces from O(M2

c ) to O(Mc), where
the complexity accounts for the number of search candidates
in the ML decoding.

IV. ANTENNA SELECTION SCHEME

In this section, we will extend the proposed scheme to
systems with more than two transmit antennas. To this end,
we introduce a simplified antenna selection method for the
proposed spatial multiplexing system. We assume a spatial
multiplexing system with Mt transmit antennas and Mr

receive antennas.
The general data path for the proposed MIMO transmission

is shown in Figure 2. Two input symbols are precoded by
the function F(x, θ) as in (8), and are transmitted over two
transmit antennas out of Mt transmit antennas. The optimal
selection of two transmit antennas is made based on the
minimum Euclidean distance.

Let P(Mt, 2) denote the set of all possible
(
Mt

2

)
=

Mt(Mt−1)
2 subsets out of Mt transmit antennas. For a sub-

set P ∈ P(Mt, 2), the receive constellation is defined as
{Hθ

P s(x)| x ∈ Q2} [12] where H
θ

P denotes the Mr × 2
virtual channel matrix corresponding to the transmit antenna



subset P . Then, we need to determine the optimum subset P
whose squared minimum distance d 2

min(P ) between transmit-
ted vectors xc and xe is the greatest. We compute d 2

min(P )
as

d 2
min(P ) = min

xc,xe∈Q2

∣∣∣
∣∣∣Hθ

P s(xc − xe)
∣∣∣
∣∣∣2

= min
xc,xe∈Q2

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
[hθ

P,1h
θ
P,2h

θ
P,3h

θ
P,4]



�[x1,c − x1,e]
�[x1,c − x1,e]
�[x2,c − x2,e]
�[x2,c − x2,e]




∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

2

(15)

where hθ
P,i is the ith column of the real-valued representation

of H
θ

P . Since the computation of d 2
min(P ) involves all possi-

ble pairs of xc and xe, the conventional spatial multiplexing
systems require a search over

(
M2

c
2

)
= M2

c (M2
c −1)

2 vectors.
In the following, we show that the proposed spatial multi-

plexing allows us to obtain the minimum distance in a much
simpler form. Note that the subspace spanned by hθ

P,1 and
hθ

P,2 is orthogonal to that spanned by hθ
P,3 and hθ

P,4. In this
case, assuming that two symbols x1 and x2 are independent
of each other, Equation (15) can be rewritten as

d 2
min(P ) = min

x1,c, x1,e∈Q

∣∣∣∣
∣∣∣∣[hθ

P,1h
θ
P,2 ]

[�[x1,c − x1,e]
�[x1,c − x1,e]

]∣∣∣∣
∣∣∣∣
2

+ min
x2,c, x2,e∈Q

∣∣∣∣
∣∣∣∣[hθ

P,3h
θ
P,4]

[�[x2,c − x2,e]
�[x2,c − x2,e]

]∣∣∣∣
∣∣∣∣
2

.(16)

Furthermore, we note that the first term on the right-hand
side of equation (16) has the same minimum distance as
the second term since the geometrical relationship between
hθ

P,1 and hθ
P,2 remains the same as that between hθ

P,3 and

hθ
P,4 (i.e.,

∣∣∣
∣∣∣hθ

P,1

∣∣∣
∣∣∣ =

∣∣∣
∣∣∣hθ

P,3

∣∣∣
∣∣∣,

∣∣∣
∣∣∣hθ

P,2

∣∣∣
∣∣∣ =

∣∣∣
∣∣∣hθ

P,4

∣∣∣
∣∣∣, and

hθ
P,1 · hθ

P,2 = hθ
P,3 · hθ

P,4). This symmetry means that, in the
computation of the minimum distance, we need to consider
only one of the two terms in (16) while assuming that the
other term is zero. In other words, we can set x2,c = x2,e

while d 2
min(P ) is computed with x1,c �= x1,e. Let us define

a difference vector as e(xc, xe) = [ �[xc − xe] �[xc − xe] ]t

with xc �= xe. Then, Equation (16) can be simplified as

d 2
min(P ) = min

xc,xe∈Q

∣∣∣
∣∣∣[ hθ

P,1 hθ
P,2 ]e(xc, xe)

∣∣∣
∣∣∣2 . (17)

It is clear that the computation of d 2
min(P ) in (17) requires a

search over
(
Mc

2

)
= Mc(Mc−1)

2 vectors.
Now we will illustrate a way to reduce the computational

complexity even further. Considering the symmetries in uni-
form QAM constellations, we can significantly reduce the
set of difference vectors to search in Equation (17). For
illustrative purposes, we consider 16QAM as shown in Figure
3. Note that, among all possible

(
16
2

)
= 120 difference vectors

e(xc, xe), there exist many equal and collinear difference
vectors. For example, pairs (x4, x6) and (x12, x14) yield
the same difference vectors (e(x4, x6) = e(x12, x14)) while
pairs (x4, x10) and (x4, x7) are related as collinear difference
vectors (e(x4, x10) = 2e(x4, x7)). Then, by excluding these
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Fig. 3. 16QAM constellation

TABLE I

CANDIDATE PAIRS OF (xc, xe) FOR THE SET χ̂c−e OF e(xc, xe)

Case Mod (�[xc],�[xc]) (�[xe],�[xe])

hθ
P,1 · hθ

P,2 ≥ 0, QPSK (1,−1) (−1,±1)

||hθ
P,1|| ≤ ||hθ

P,2|| 16QAM (3,−3) (−3,±1),(±1,−1),(1,−3)

hθ
P,1 · hθ

P,2 ≥ 0, QPSK (1,−1) (±1, 1)

||hθ
P,1|| > ||hθ

P,2|| 16QAM (3,−3) (±1, 3), (1,±1), (3,−1)

hθ
P,1 · hθ

P,2 < 0, QPSK (−1,−1) (±1, 1)

||hθ
P,1|| > ||hθ

P,2|| 16QAM (−3,−3) (±1, 3), (−1,±1), (−3,−1)

hθ
P,1 · hθ

P,2 < 0, QPSK (−1,−1) (1,±1)

||hθ
P,1|| ≤ ||hθ

P,2|| 16QAM (−3,−3) (3,±1), (±1,−1), (−1,−3)

equal and collinear difference vectors and utilizing the chan-
nel’s geometrical properties such as the norm and the inner
product of hθ

P,1 and hθ
P,2, we can determine the set χ̂c−e

of e(xc, xe) which is actually used in the computation of
d 2

min(P ) without any performance degradation. We generalize
the candidate pairs (xc, xe) for the set χ̂c−e as listed in Table
I. This approach can be easily extended to higher order Mc-
QAM schemes.

Finally, d 2
min(P ) can be expressed as

d 2
min(P ) = min

e(xc,xe)∈χ̂c−e

∣∣∣
∣∣∣[ hθ

P,1 hθ
P,2 ]e(xc, xe)

∣∣∣
∣∣∣2 (18)

which facilitates a search for the optimal antenna subset P ∗.
As a consequence, the optimal subset P ∗ from the entire

set P(Mt, 2) is obtained as

P ∗ = arg max
P ∈ P(Mt,2)

d 2
min(P ).

It is important to note that the proposed spatial multiplexing
scheme reduces the size of the set of candidate vectors in
computing d 2

min(P ) from 120, 32640, and 8386560 to 2,
5, and 19 for QPSK, 16QAM and 64QAM, respectively,
as Equation (15) for the minimum Euclidean distance is
equivalent to Equation (18).

V. SIMULATION RESULTS

In this section, we provide simulation results that illustrate
the performance of our proposed OSM compared with the
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Fig. 4. BER performance of the spatial multiplexing schemes with 4QAM.
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Fig. 5. BER performance of the spatial multiplexing schemes with 16QAM.

closed loop schemes OUP and OLP in Section II.
In Figures 4 and 5, we depict the BER comparison of

the OSM and two optimal precodings OUP and OLP with
Mt = 3 and Mr = 2. For comparison purposes, we also
plot the performance of the 2x2 spatial multiplexing with
ML decoding at the receiver where the number of the search
candidates for the ML decoding is M2

c without any precoding.
We employ the proposed antenna selection method based on
Equation (18) (denoted by SC(dmin)). For the 4QAM case
presented in Figure 4, we can see that the OSM provides a 4
dB gain at a BER of 10−3 over the no precoding case. More
importantly, Figure 4 shows that the OSM outperforms both
the OUP and OLP cases by 1.8 dB and 3.8 dB, respectively.
It should be noted that in the conventional precoding systems
we need to solve (2) and (3) to derive the precoding matrix
by computing the SVD operation and the power allocation
matrix that determines the power distribution among the
spatial modes. As for the feedback overhead, our proposed
scheme needs only a single phase value feedback, while the
conventional precoding schemes require much larger feedback
information in sending back the entire channel or precoding

matrix, especially including the power allocation matrix for
the OLP. Finally, for the case of 16QAM in Figure 5, we see
a similar trend as for 4QAM in Figure 4.

VI. CONCLUSION

In this paper, we presented a new orthogonalized spatial
multiplexing scheme for MIMO systems which minimizes
the overall complexity. The primary goal of this work is to
maximize the system performance with a low complexity at
the receiver while maintaining the optimal ML decoding. By
taking a single phase value feedback, simple orthogonal ML
decoding is achieved. Also, we presented a simple antenna
selection method for choosing the subset of transmit antennas
that maximizes the minimum Euclidean distance of the receive
constellation in the proposed spatial multiplexing system. The
simulation results confirm that the proposed orthogonal spatial
multiplexing scheme is quite effective in approaching the per-
formance of the optimal linear precoding with a significantly
reduced complexity and feedback amount.
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