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Abstract— Recently a number of transmission schemes have
been introduced to achieve sum capacity for multiuser multi-
input multi-output (MIMO) broadcast channels (BC). A block
diagonalization (BD) is an attractive method which operates
only a few dB away from the sum capacity. This scheme is
a generalization of the zero-forcing channel inversion to the
case where each receiver is equipped with multiple antennas.
One of the limitation of the BD is that the sum rate does
not grow linearly with the number of users due to the noise
enhancement. In this paper, we propose a generalized minimum
mean-squared error (MMSE) channel inversion algorithm for
users with multiple antennas to overcome the drawbacks of the
BD for multiuser MIMO systems. Simulation results confirm
that the proposed scheme achieves performance improvement
over the conventional BD scheme. Also, we present a precoding
method for systems with channel estimation errors and show
that the proposed algorithm is robust to the channel estimation
errors.

I. INTRODUCTION

Multi-input multi-output (MIMO) systems have drawn a lot
of attention in the past few years due to their great potential to
achieve high throughput in wireless communication systems
[1]. It is well known that in a single user case the capacity
scales linearly with the minimum number of transmit and re-
ceive antennas in Rayleigh fading channels [2]. More recently,
the investigation of the capacity region has been of concern in
multiuser MIMO broadcast channels (BC), where each user
has possibly multiple receive antennas [3][4][5].

In [6], it was shown that the maximum sum rate in multiuser
MIMO BC can be achieved by using dirty paper coding
(DPC), the DPC is difficult to implement in practical systems.

For linear processing systems where the base station has
multiple antennas but all users employ a single antenna,
several practical precoding techniques have been proposed
[7]. A zero-forcing channel inversion (ZF-CI) [7] is one of
the simplest precoding techniques for this case. However
its performance is rather poor for all signal-to-noise-ratios
(SNRs) due to a transmit power boost issue. Although a
minimum mean-squared error channel inversion (MMSE-CI)
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method [7] overcomes the drawback of the ZF-CI, this is still
confined to a single receive antenna case.

For the case where the users in the network have multiple
antennas, a block diagonalization (BD) algorithm, which can
be considered as a generalization of the ZF-CI, is a well-
known precoding algorithm for this case [8]. The key idea of
the BD is to eliminate the multi-user interference (MUI) by
placing all the unintended users at nullspace of the intended
user’s channels. As it attempts to completely eliminate the
MUI without any consideration on the noise, the BD is inferior
to the DPC in terms of sum capacity especially for the case
of a large number of users.

In this paper, we propose a generalized MMSE-CI (GMI)
algorithm which supports multiple data stream transmission
to each user in multiuser MIMO BC based on a noniterative
method. Unlike the conventional BD algorithm, our GMI
algorithm takes the noise into account for finding each user’s
precoding matrix to increase the signal-to-interference-plus-
noise ratio (SINR) at each user’s receiver. In addition, we in-
troduce a design method when the transmitter has incomplete
channel state information (CSI).

The following notations are used throughout the paper. We
employ uppercase boldface letters for matrices and lowercase
boldface for vectors. For any general matrix A, AT and AH

denote the transpose and the conjugate transpose, respectively.
Tr (A) indicates the trace and the Frobenius norm of matrix
A is ‖A‖2

F = Tr (AAH). For m × m matrices Aj , A =
diag {A1 · · ·An} denotes an mn×mn block diagonal matrix.

II. SYSTEM MODEL

We consider multiuser MIMO downlink systems where the
base station is transmitting to K independent users simulta-
neously. In this system, the base station is equipped with Nt

transmit antennas and user j has nj ≥ 1 receive antennas,
referred to in the following as {n1, · · · , nK} ×Nt. The total
number of receive antennas at all users is defined as Nr =∑K

j=1 nj . In the discrete-time complex baseband MIMO case,
the channel from the base station to the jth user is modeled
by the nj × Nt channel matrix Hj . We assume that Hj has
full row rank and independently and identically distributed
(i.i.d.) entries according to Nc(0, 1). Also, we assume that
the full rank channel matrix Hs = [HT

1 HT
2 · · ·HT

K ]T is
known perfectly at the base station.
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We define the transmitted data symbol vector ss, the noise
vector ws and the precoding matrix Ps for all users as

ss = [ sT
1 sT

2 · · · sT
K ]T ,

ws = [wT
1 wT

2 · · · wT
K ]T ,

Ps = [P1 P2 · · · PK ]

where sj = [sj,1 · · · sj,nj
]T ∈ Cnj and wj =

[wj,1 · · ·wj,nj
]T ∈ Cnj are the jth user’s data and noise vec-

tors, respectively and Pj represents the associated precoding
matrix. Here the symbols sj,i are assumed to be independently
generated with unit variance and the components wj, i of the
noise vector wj are i.i.d. with zero mean and variance σ2

w.
Then, the total received signal can be expressed as

ys = HsPsss + ws

and the received signal vector at the jth user is given by

yj = HjPjsj + Hj

K∑
k �=j

Pksk + wj (1)

where yj denotes the corresponding received signal vector as
yj = [yj,1 · · · yj,nj

]T ∈ Cnj . Let s̃s = Psss denote the signal
vector actually transmitted at the base station, it satisfies the
total power constraint E[‖s̃s‖2] ≤ Ptotal.

Denoting the overall receive filter Ms as

Ms = diag {M1 M2 · · · MK}
where Mj represents the jth user’s receive filter, the receive
filter output vector of the jth user xj can be written as

xj = MjHjPjsj + MjHj

K∑
k �=j

Pksk + Mjwj (2)

where xj = [xj,1 · · ·xj,nj
]T ∈ Cnj .

III. GENERALIZATION OF ZERO-FORCING CHANNEL

INVERSION

In this section, we represent an alternative way of represent-
ing the conventional BD [8] by extending the ZF-CI method
[7] for the case where each user has more than a single
antenna. This new ZF-CI method achieves the performance
equivalent to the conventional BD scheme [8] with reduced
complexity. This will be referred to as the generalized zero-
forcing CI (GZI).

A. Generalized Zero-Forcing Channel Inversion

The key idea of the GZI algorithm is to identify the
precoding matrix Ps which make all MUI zero. To eliminate
all the MUI, we impose a constraint such that

HjPk = 0 for all j �= k and 1 ≤ j, k ≤ K. (3)

In order to compute the orthogonal vectors of H̃j , we define
the pseudo-invserse of the channel matrix Hs as

Ĥs = HH
s (HsHH

s )−1 = [ Ĥ1 Ĥ2 · · · ĤK ]. (4)

Consider the QR decomposition of Ĥj as

Ĥj = [Q̂
(1)

j Q̂
(0)

j ]

[
R̂

(1)

j

0

]
= Q̂

(1)

j R̂
(1)

j (5)

where R̂
(1)

j is an nj × nj upper triangular matrix and Q̂
(1)

j

is an Nt × nj matrix of which columns form an orthonormal
basis for Ĥj . Since we obtain Ĥj from the inverse opera-

tion, we have H̃jQ̂
(1)

j R̂
(1)

j = 0 from (5). Thus, it follows

H̃jQ̂
(1)

j = 0. Here, we can see that the columns of Q̂
(1)

j

form an orthonormal basis for nullspace of H̃j so that the jth
user’s precoder of the GZI which is constructed by a linear

combination of Q̂
(1)

j is also satisfy the zero MUI constraint
in (3). If each user has a single receive antenna, this reduces
to the ZF-CI solution with unit norm precoding vectors.

By multiplying the matrix Q̂
(1)

j to the channel matrix Hs,

the jth user has the non-interfering block channel HjQ̂
(1)

j

for j = 1, · · · ,K. In order to decompose the block channel

HjQ̂
(1)

j into parallel subchannels, we now apply the SVD

operation of HjQ̂
(1)

j as

HjQ̂
(1)

j = U(q)
j Λ(q)

j [V(q(1))
j V(q(0))

j ]H

where V(q(1))
j denotes the set of right singular vectors cor-

responding to non-zero singular values and U(q)
j is the left

singular matrix. Defining Pj and Mj as Pj = Q̂
(1)

j V(q(1))
j

and Mj = U(q)H
j , the jth user’s receive filter output vector

of the GZI scheme xj in (2) is given as

xj = Λ(q)
j sj + U(q)H

j wj . (6)

Let us denote Φj as the power allocation matrix for the jth
user, the achievable sum rate of the GZI can be expressed as

RGZI = max
Φj

K∑
j=1

log2 det

(
I +

(Λ(q)
j )2Φj

σ2
w

)

subject to
K∑

j=1

Tr(Φj) ≤ Ptotal (7)

and the optimal power loading matrix Φj can be calculated by
using the water-filling (WF) method [9]. Finally, the precoding
matrix and the overall receive filter are defined as

PGZI
s = [Q̂

(1)

1 V(q(1))
1 Q̂

(1)

2 V(q(1))
2 · · · Q̂(1)

K V(q(1))
K ]Φ

1
2 ,

MGZI
s = diag {U(q)H

1 U(q)H
2 · · · U(q)H

K }
where Φ = diag {Φ1 Φ2 · · ·ΦK}.

B. Complexity Analysis

As for the computational complexity of the GZI algorithms
with K users, the proposed GZI needs to compute an inverse
operation in (4) and the QR decomposition of Nt ×nj matrix
Ĥj in (5) K times, while the conventional BD requires to
perform the SVD operation of (Nr − nj) × Nt other user’s
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channel matrix K times. The complexity of the SVD of
(Nr − nj) × Nt matrix is O(N2

t (Nr − nj)) [10]. The QR-
decomposition of Nt×nj matrix Ĥj has O(Ntn

2
j ) complexity

[10] and the complexity of the Moor-Penrose pseudo-inverse
HH

s (HsHH
s )−1 follows O(Nr

ω), where 2 < ω < 3 [11].
Consequently, the proposed GZI algorithm has lower compu-
tational complexity than the conventional BD in [8].

IV. GENERALIZATION OF MMSE CHANNEL INVERSION

In this section, we propose a generalized MMSE-CI (GMI)
algorithm. Based on the new interpretation of the GZI made
in the previous section, we outline a procedure for identifying
the GMI precoding matrix which could balance the MUI and
the noise for each user.

A. Generalized MMSE channel inversion

In the GMI scheme, the precoding matrix can be determined
by applying the MMSE-CI introduced in [7]. We denote H̄s

as

H̄s = (HH
s Hs + αI)−1HH

s = [ H̄1 H̄2 · · · H̄K ] (8)

where α represents the ratio of the total noise variance to
the total transmit power [7]. We assume the unit variance
data symbol and Nt = Nr, α can be denoted by σ2

w. For
orthogonalization of H̄j , we can employ

H̄j = [Q̄(1)
j Q̄(0)

j ]

[
R̄(1)

j

0

]
= Q̄(1)

j R̄(1)
j (9)

where R̄(1)
j is an nj × nj upper triangular matrix and the

matrix Q̄(1)
j is composed of nj orthonormal basis vectors of

H̄j .
Similar to the GZI in the previous section, we can construct

the precoding matrix Pj for the jth user using a linear
combination of columns of Q̄(1)

j . In comparison with the

GZI, the columns of Q̄(1)
j in the GMI span the nullspace

of other users’ effective channel matrix while taking the
noise into account. This leads to an increase of SINR at
each user’s receiver. However, the jth user’s precoder of
the GMI generates the residual interference. Thus, a proper
whitening or interference-suppression process is needed. In
the following, we introduce the noise whiting process.

In order to compute the whiting matrix which is employed
to the precoding matrix, we define the transmit combining
matrix T̄s as

T̄s = diag{T̄1 T̄2 · · · T̄K}
where T̄j is an nj × nj square matrix. Denoting P̄s as

P̄s = [P̄1 , P̄2 · · · P̄K ] = [Q̄(1)
1 Q̄(1)

2 · · · Q̄(1)
K ]T̄s, (10)

the corresponding received signal vector of the jth user can
be written from (1) as

ȳj = HjQ̄
(1)
j T̄jsj + Hj

∑
k �=j

Q̄(1)
k T̄ksk + wj . (11)

From (11), the transmit combining matrix affects other users’
interference, thus we define the power of other users’ inter-
ference induced by the jth user’s precoder plus the total noise
power of its receiver as

σ2
OIN,j = ‖H̃jQ̄

(1)
j T̄j‖2

F + njσ
2
w

= Tr (T̄H
j (Q̄(1)H

j H̃
H

j H̃jQ̄
(1)
j + σ2

wInj
)T̄j).

Since the matrix Q̄(1)H
j H̃

H

j H̃jQ̄
(1)
j + σ2

wInj
is Hermitian

and positive definite, we can decompose this matrix using
Cholesky factorization as

Q̄(1)H
j H̃

H

j H̃jQ̄
(1)
j + σ2

wInj
= L̄H

j L̄j . (12)

Then, σ2
OIN,j can be expressed by σ2

OIN,j = Tr (T̄H
j L̄H

j L̄jT̄j).
We can obtain the jth user’s transmit combining matrix which
minimizes σ2

OIN,j as T̄j = L̄−1
j .

Multiplying the P̄s in (10) to the network channel matrix
Hs, each user has the interference suppressed block channel.
Before we decouple the block channel, we find the whiting
matrix which is employed to each user’s receive filter. Let us
define the receive combining matrix R̄s as

R̄s = diag{R̄1 R̄2 · · · R̄K}
and M̄s as M̄s = R̄s, the corresponding receive filter output
vector of the jth user x̄j is written from (2) and (10) as

x̄j = R̄jHjP̄jsj + R̄jHj

∑
k �=j

P̄ksk + R̄jwj . (13)

Then, from (13), the SINR of the jth user is given by

SINRj =
Tr(R̄jHjP̄jP̄

H
j HH

j R̄H
j )

σ2
wTr(R̄jR̄

H
j ) + Tr(R̄jHjP̃jP̃

H

j HH
j R̄H

j )
(14)

where P̃j = [P̄1 · · · P̄j−1P̄j+1 · · · P̄K ]. As the denominator
of (14) represents the total power of the interference plus noise
of the jth user, this can be expressed as

σ2
IN,j = Tr (R̄j(HjP̃jP̃

H

j HH
j + σ2

wInj
)R̄H

j ). (15)

Since the receive combining matrix R̄j which minimizes σ2
IN,j

in (15) can maximize the SINRj in (14), we decompose

HjP̃jP̃
H

j HH
j + σ2

wInj
as

HjP̃jP̃
H

j HH
j + σ2

wInj
= L̃

H

j L̃j . (16)

Then, we can obtain the jth user’s receive combining matrix
R̄j = L̃

−H

j .
Note that, when SNR increases, the transmit and receive

combining matrices converge to βINr
where β is a constant.

Also, P̄s can be scaled to satisfy the power constraint, i.e.,
Tr (P̄H

s P̄s) ≤ Nt.
In order to decompose the jth user’s block channel

R̄jHjP̄j in (13) into the parallel subchannels, we denote the
SVD of R̄jHjP̄j as

R̄jHjP̄j = U(r)
j Λ(r)

j [V(r(1))
j V(r(0))

j ]H
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where V(r(1))
j denotes the set of right singular vectors and

U(r)
j is the left singular matrix. Thus, the precoding matrix

and the overall receive filter of the GMI scheme are obtained
as

PGMI
s = [P̄1V

(r(1))
1 P̄2V

(r(1))
2 · · · P̄KV(r(1))

K ],

MGMI
s = diag{U(r)H

1 R̄1 U(r)H
2 R̄2 · · · U(r)H

K R̄K}.
Finally, the receive filter output signal vector at the jth user
can be written as

xj = Λ(r)
j sj + MGMI

j Hj

∑
k �=j

PGMI
k sk + MGMI

j wj . (17)

Let λ
(r)
j,i denote the ith diagonal element of Λ(r)

j . Each
received signal in (17) contains in part the signal of interest
with the channel gain (λ(r)

j,i )
2 and in part the interference from

the other users plus Gaussian noise. The SINR of each stream
can be expressed as

SINRj,i =
(λ(r)

j,i )
2

σ2
w‖mj,i‖2 +

∑
k �=j‖mj,iHjPGMI

k ‖2
(18)

where mj,i is the ith row vector of MGMI
j . Then, the sum rate

of the proposed GMI scheme is given by

RGMI =
K∑

j=1

nj∑
i=1

log2 (1 + SINRj,i) . (19)

B. Design with imperfect channel information

So far, we have assumed that the base station has knowledge
of full CSI. However, in practical downlink systems the CSI
available at the transmitter is generally imperfect. In this
section, we illustrate how the GMI algorithm can overcome
such cases where the CSI at the base station is inaccurate.

We consider the channel estimation error model introduced
in [12]

Hs = Hest + Herr (20)

where Hs, Hest and Herr represent the true channel matrix,
the estimated channel matrix and the estimation error matrix,
respectively. We assume that Hest and Herr are uncorrelated,
and that Herr in (20) has i.i.d. elements with zero mean and
the estimation error variance σ2

e,h. The entries of Hs are also
i.i.d. with zero mean and unit variance. We also assume that
Herr is independent of the data vector ss, and that σ2

e,h is
known to the base station.

In this system model, the received signal vector is given by

ys = HestPsss + HerrPsss + ws (21)

where HerrPsss in (21) results from the estimation error.
Defining the error term as e = HerrPsss + ws, the mean
square error (MSE) can be computed as

σ2
e = E[‖e‖2] = Nr σ2

e,h Tr (PH
s Ps) + Nr σ2

w. (22)
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Fig. 1. Comparison of the sum rate as a function of K for SNR = 10dB

From (8) and (22), the precoding matrix can be obtained
by applying the MMSE-CI of the estimated channel matrix
with the above MSE. We denote H̄est as

H̄est = (HH
estHest + αeI)−1HH

est

= [ H̄est,1 H̄est,2 · · · H̄est,K ] (23)

where αe is given by αe = σ2
e/Ptotal = Nrσ

2
e,h + σ2

w

and employ the QR-decomposition to H̄est,j as H̄est,j =
Q̄(1)

est,jR̄
(1)
est,j . Then, the Cholesky factorizations in (12) and

(16) are given as

Q̄(1)H
est,j H̃

H

est,j H̃est,j Q̄(1)
est,j + αeInj

= L̄H
est,jL̄est,j ,

H̄est,j P̃
(1)

est,jP̃
(1)H

est,j H̄H
est,j + αeInj

= L̃
H

est,j L̃est,j .

Finally, the transmit and receive combining matrices are com-
puted as T̄est,j = L̄−1

est,j and R̄est,j = L̃
−H

est,j , respectively. A
performance gain over the conventional BD in the presence
of channel estimation errors will be verified in the following
simulation section.

V. NUMERICAL RESULTS

In this section, we present the performance of the proposed
GMI scheme comparing with the BD scheme in [8] through
Monte carlo simulations.

In Fig. 1, we compare the sum capacity and sum rates for
the proposed GMI and BD schemes in terms of the number
of users K for the case where each user has two receive
antennas and the base station has Nt = 2K antennas. The sum
capacity is obtained by calculating the sum power iterative
water-filling (SP-IWF) algorithm in [13], and the sum rate of
the GMI scheme is computed using (18) and (19). Unlike the
conventional BD scheme, the sum rate slope of the GMI is
much steeper than the BD scheme and exhibits a linear growth
with K. It is clear from the plot that the capacity gain of the
GMI over the BD grows as the number of users increases.
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In Fig. 3, we show the simulation results of coded systems
for various channel models in terms of FER with respect to
SNR in dB for the {2, 2} × 4 and {2, 2, 2} × 6 cases. For
all FER simulations, a rate-1/2 turbo code based on parallel
concatenated code with polynomial (15,13) in octal notation
is employed. The number of decoding iterations is set to 6
for the turbo code. We employ 4-QAM with Gray mapping
in both cases. The network channel Hs is generated by an
ergodic random process at each frame and is fixed during the
transmission of the frame. A 3dB SNR gain at 1% FER for the
{2, 2} × 4 case is observed in Fig. 3. Also, the figure shows
that the proposed GMI algorithm outperforms the BD by more
than 5dB at 1% FER for the {2, 2, 2} × 6 case. Note that, as
shown in the sum rate comparison, the FER performance gap

increases as the number of users grows.
Finally, in Fig. 3, we evaluate the performance in the block

fading channels with various channel estimation error variance
values σ2

e,h. We plot the bit error rate (BER) performance of
the proposed GMI and the BD schemes with turbo codes.
In the presence of the channel estimation error, we can see
from (22) that the performance becomes limited by the error
variance as SNR increases. Nevertheless, it is clear that the
proposed GMI scheme is much more robust to the estimation
errors compared to the conventional BD scheme.

VI. CONCLUSION

In this paper, we have proposed a generalized MMSE
channel inversion algorithm for multiuser MIMO downlink
systems where each user has more than or equal to one
antenna. An alternative approach of the conventional BD
has been presented by using the ZF channel inversion and
the orthogonalization process. The proposed GMI precoder
and receive filter are obtained by employing the MMSE
channel inversion and some decomposition methods and as a
result, the SINR is increased at each user’s receiver. Through
the simulations, we have showed that the proposed GMI
outperforms the conventional BD and demonstrated that the
proposed scheme is robust to the estimation error.
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