Regularized Channel Inversion for Multiple-Antenna Users in Multiuser MIMO Downlink

Heunchul Lee*, Kwangwon Lee*, Bertrand M. Hochwald†, and Inkyu Lee*
*School of Electrical Eng., Korea University, Seoul, Korea
Email: {heunchul, kwangwonlee, inkyu}@korea.ac.kr
†Beceem Communications, CA, USA Email: hochwald@beceem.com

Abstract—Channel inversion is one of the simplest techniques for multiuser downlink systems with single-antenna users. In this paper, we extend the regularized channel inversion technique developed for the single-antenna user case to multiuser multiple-input multiple-output (MIMO) channels with multiple-antenna users. We first employ the multiuser preprocessing to project the multiuser signals near the null space of the unintended users based on the MMSE criterion, and then the single-user preprocessing is applied to the decomposed MIMO interference channels. In order to reduce the complexity, we focus on non-iterative solutions for the multiuser transmit beamforming and use a linear receiver based on an MMSE criterion. Simulation results show that the proposed scheme outperforms existing joint iterative algorithms in most multiuser configurations.

I. INTRODUCTION

Recently, the sum capacity of Gaussian vector broadcast channels has been studied, and in order to achieve the sum capacity, many advanced multiuser transmission schemes have been investigated for the downlink of multiuser multiple-input multiple-output (MIMO) wireless systems [1]. We consider a multiuser MIMO downlink system in which a base station (BS) equipped with multiple antennas transmits to several users simultaneously, each with multiple antennas. For the single-antenna user case, a channel inversion has been considered to suppress the cochannel interference [2]. In [3], as a generalization of the channel inversion, a joint channel diagonalization was proposed for multiuser MIMO transmission systems where each user has multiple receive antennas. Similar algorithms based on a null space projection have been presented also in [4] and [5]. Compared to the work in [5], the method in [6] can achieve more diversity by iteratively placing the nulls at the combined signal outputs of the unintended users.

In these approaches, all the multiuser interference is eliminated by transmitting each user’s data along the null space of the other users’ channel matrix, which may limit the system performance due to noise enhancement. In order to get rid of this limitation, the optimum transmit precoding and receive combining matrices can be obtained by using a joint iterative optimization procedure based on a minimum mean-square error (MSE) criterion, subject to total transmit power [7].

In this paper, we propose a new transmit method for mitigating the cochannel interference in multiuser downlink systems. In contrast to the iterative algorithm in [7], we focus on non-iterative solutions for the transmit precoding matrix and then use a simple MMSE receiver to reduce the complexity. To this end, we extend the regularized channel inversion technique developed for the single-antenna users in [2], to the case of multiuser MIMO downlink in which each user has more than one receive antenna. The proposed precoding matrix consists of two parts: namely a multiuser preprocessing for decomposing a multiuser MIMO channel into a set of parallel single-user MIMO interference channels, and a single-user preprocessing for maximizing the sum rate under a sum power constraint. The multiuser preprocessing is designed by generalizing the earlier work in [2] to minimize the mean-square error (MSE) between the transmitted and received symbols, and the single-user preprocessing employs a combination of the channel diagonalization and power allocation matrix in order to maximize the sum rate subject to a total transmit power constraint.

II. MULTIUSER MIMO SYSTEM MODEL

In this section, we describe the system model of the multiuser MIMO downlink. The base station employs M transmit antennas and communicates with K users simultaneously. User j, $(j = 1, 2, \cdots, K)$, has n_j receive antennas and we define N as $N = \sum_{j=1}^{K} n_j$. The channel model from the base to the jth user is represented by an n_j by M channel matrix H_j, where the (p, q) entry of H_j denotes the path gain from BS antenna q to antenna p of user j. The entries are independently and identically distributed (i.i.d.) according to $\mathcal{C}(0, 1)$, i.e., $H_j \in \mathbb{C}^{n_j \times M}$.

Let l_j denote the number of data streams for user j. The base station desires to send the $l_j \times 1$ vector x_j of symbols to the jth user. Denoting $x_{j,i}$ as the symbol transmitted on the ith spatial subchannel by the jth user, we can write $x_j = [x_{j,1} x_{j,2} \cdots x_{j,l_j}]^T$. The user j employs a linear transmit precoding matrix $T_j = [t_{j,1}, t_{j,2}, \cdots, t_{j,l_j}]$ of size $M \times l_j$, which transforms the data vector x_j to the $M \times 1$ transmitted vector $T_j x_j$. Here, $t_{j,i}$ indicates the ith column of...
\(\mathbf{T}_j \). Denoting the signal vector which is actually transmitted at the base by \(\sum_{j=1}^{K} \mathbf{T}_j \mathbf{x}_j \), the received signal vector \(\mathbf{y}_j = [y_{j,1} y_{j,2} \cdots y_{j,n_j}]^T \) at the \(j \)th user can be written as \(\mathbf{y}_j = \mathbf{H}_j \mathbf{T}_j \mathbf{x}_j + \mathbf{H}_j \sum_{i \neq j} \mathbf{T}_i \mathbf{x}_i + \mathbf{w}_j \) \hspace{1cm} (1)

where \(\mathbf{w}_j = [w_{j,1} \cdots w_{j,n_j}]^T \) denotes the noise vector for user \(j \). Here \((\cdot)^H\) denotes the transpose of a (matrix or) vector. The components \(w_{j,i} \) of the noise vector \(\mathbf{w}_j \) are i.i.d. with zero mean and variance \(\sigma_n^2 \) for \(j = 1, \cdots, K \) and \(i = 1, \cdots, n_j \). Note that user \(j \) not only receives its desired signal \(\mathbf{T}_j \mathbf{x}_j \) through the channel \(\mathbf{H}_j \) but also the interference \(\sum_{i \neq j} \mathbf{T}_i \mathbf{x}_i \) from the signals destined for other users \(i \neq j \).

Defining the network channel as
\[
\mathbf{H}_s = \begin{bmatrix}
\mathbf{H}_1 \\
\mathbf{H}_2 \\
\vdots \\
\mathbf{H}_K
\end{bmatrix},
\] \hspace{1cm} (2)

the corresponding signals at all the users can be arranged as
\[
\mathbf{y}_s = \mathbf{H}_s \mathbf{T} \mathbf{x}_s + \mathbf{w}_s \] \hspace{1cm} (3)

where \(\mathbf{y}_s = [y_{s,1} y_{s,2} \cdots y_{s,L}]^T \), \(\mathbf{T}_s = [\mathbf{T}_1 \mathbf{T}_2 \cdots \mathbf{T}_K] \), \(\mathbf{x}_s = [x_{s,1} x_{s,2} \cdots x_{s,K}]^T \) and \(\mathbf{w}_s = [w_{s,1} w_{s,2} \cdots w_{s,L}]^T \). We assume \(\mathbb{E}[\mathbf{w}_s^H \mathbf{w}_s] = \sigma_n^2 \mathbf{I}_N \), where \(\mathbf{I}_d \) denotes the identity matrix of size \(d \). \(\mathbb{E} \) represents the expectation operator and \((\cdot)^H\) represents the complex conjugate transpose of a vector (or matrix). We impose the power constraint \(\mathbb{E} [\mathbf{tr} [\mathbf{x}_s^H \mathbf{x}_s]] = 1 \), where \(\mathbf{tr} [\cdot] \) denotes the trace operator of a matrix. The transmit precoding matrix \(\mathbf{T}_j \) satisfies the orthogonal condition such that \(\mathbf{T}_j^H \mathbf{T}_j \) is a diagonal matrix with nonnegative entries for \(j = 1, \cdots, K \). Also it is assumed that \(\{\mathbf{T}_j\}_{j=1}^{K} \) are normalized as follows: \(\mathbf{tr} [\mathbf{T}_s^H \mathbf{T}_s] = \sum_{j=1}^{K} \mathbf{tr} [\mathbf{T}_j^H \mathbf{T}_j] = L \), where \(L \) denotes the total number of data streams (\(L = \sum_{j=1}^{K} n_j \)). This implies that the actual transmitted vector \(\mathbf{T}_j \mathbf{x}_j \) has unit power, i.e., \(\mathbb{E} [||\mathbf{T}_j \mathbf{x}_j||^2] = 1 \), where \(||\cdot|| \) denotes the 2-norm of a vector. Then the average transmit signal-to-noise ratio (SNR) of the network is defined as \(\rho = 1/\sigma_n^2 \).

Let \(\mathbf{R}_j \) represent the receive combining matrix for the \(j \)th user. At the user \(j \), the soft output data vector \(\hat{\mathbf{x}}_j \) can be expressed as \(\hat{\mathbf{x}}_j = \mathbf{R}_j \mathbf{y}_j \). The mean squared errors (MSEs) between the transmitted and received signals are given as the diagonal elements in the error covariance matrix \(\mathcal{E}_s \), which is defined by
\[
\mathcal{E}_s = \mathbb{E} [(\mathbf{x}_s - \hat{\mathbf{x}}_s)(\mathbf{x}_s - \hat{\mathbf{x}}_s)^H]
\] \hspace{1cm} (4)

where \(\hat{\mathbf{x}}_s = [\hat{x}_{s,1}^T \hat{x}_{s,2}^T \cdots \hat{x}_{s,K}^T]^T \) is an estimate of \(\mathbf{x}_s \).

In this paper we consider the normalized error covariance matrix \(\mathbf{E}_s \) which is equal to \(\mathcal{E}_s \) normalized with the variance of \(x_{j,i} \). \(\frac{1}{L} \). Note that the normalization makes the diagonal entries of \(\mathbf{E}_s \) lie in the range from 0 to 1. From the system model in (3) and the definition of \(\mathcal{E}_s \) in (4), the normalized error covariance matrix \(\mathbf{E}_s \) can be rewritten as
\[
\mathbf{E}_s = \frac{\mathcal{E}_s}{L} = (\mathbf{R}_s \mathbf{H}_s \mathbf{T}_s - \mathbf{I}_L)(\mathbf{R}_s \mathbf{H}_s \mathbf{T}_s - \mathbf{I}_L)^H - \frac{L}{\rho} \mathbf{R}_s \mathbf{R}_s^H
\] \hspace{1cm} (5)

where \(\mathbf{R}_s = \text{diag}\{\mathbf{R}_1, \mathbf{R}_2, \cdots, \mathbf{R}_K\} \).

In this paper, we assume a linear MMSE receiver. Then for any transmit precoding matrices \(\mathbf{T}_1, \mathbf{T}_2, \cdots, \mathbf{T}_K \), the optimum solution for user \(j \) is given by \(\mathbf{R}_j = \mathbf{T}_j^H \mathbf{H}_j^H \left(\sum_{k=1}^{K} \mathbf{T}_k \mathbf{T}_k^H \right)^{-1} \mathbf{H}_j^H + \frac{L}{\rho} \mathbf{I}_{n_j} \) \hspace{1cm} (6)

Our goal is to develop a new transmit processing \(\mathbf{T}_s \) to minimize the total MSE \(\mathbf{tr} [\mathbf{E}_s] \) under a total power constraint. No closed form solution is available to find the optimum global transmit matrix \(\mathbf{T}_s \) since the optimum precoding matrices \(\{\mathbf{T}_j\}_{j=1}^{K} \) are represented by functions of the optimum receive combining matrices \(\{\mathbf{R}_j\}_{j=1}^{K} \) and the optimum receive matrices on the other hand are also functions of the transmit matrices \(\{\mathbf{T}_j\}_{j=1}^{K} \). In the following sections, we derive a closed loop solution to the transmit precoding \(\mathbf{T}_s \) by utilizing the regularized channel inversion technique in [2].

III. CHANNEL INVERSION FOR USERS WITH MULTIPLE ANTENNAS

In this section, we describe how the regularized channel inversion technique in [2] can be extended to multiuser MIMO downlink systems in which each user receives multiple data streams via multiple receive antennas. We assume that the base station provides full spatial multiplexing gain \((l_j = n_j)\) to every user. We note that this assumption is made to simplify the presentation. At the end of this section, the proposed transmit scheme will be extended to apply to the general case where \(1 \leq l_j \leq n_j \).

Let \(h_{j,i}^T \) denote the \(i \)th row of \(\mathbf{H}_j \). Then, we have \(\mathbf{H}_j^T = [h_{j,1} h_{j,2} \cdots h_{j,n_j}] \). The analysis in [2] focused on the single-antenna user case where no receive combining processing is employed at the users. By applying the work of [2] directly to the general system model in (3), the network precoding matrix \(\mathbf{T}_s \) can be obtained in a form of
\[
\mathbf{T}_s = [t_{1,1} \cdots \mathbf{t}_{j,i} t_{j+1,2} \cdots t_{j+2,l_2} \cdots \mathbf{t}_{K,1} \cdots \mathbf{t}_{K,l_K}]
\] \hspace{1cm} (7)

\[= \mathbf{H}_s^H \left(\mathbf{H}_s \mathbf{H}_s^H + \sigma_n^2 \mathbf{I}_N \right)^{-1}, \]

where the optimal \(\alpha \) is determined according to the total transmit power and the noise variance.

In order to control both the inter-user interference that is caused by \(x_{j,i} \) onto the other \(K - 1 \) users through channel matrices \(\mathbf{H}_p \) for \(p \neq j \) and the intra-user interference that is seen by user \(j \) itself via the channel path \(h_{j,p} \) for \(p \neq i \), the resulting precoding vector \(\mathbf{t}_{j,i} \) in (7) is designed for projecting the symbol \(x_{j,i} \) near the null space (or on the null space for the zero-forcing (ZF) case) of \(\{h_{j,p}\}_{p \neq j} \) and \(\{h_{j,q}\}_{q \neq i} \) based on the MMSE criterion. In other words, the symbol \(x_{j,i} \) is multiplied by \(\mathbf{t}_{j,i} \) and received by antenna \(i \) at user \(j \) to minimize the MSE by compromising the maximization of the effective channel gain \(|h_{j,i}^T h_{j,i}|^2 \) for \(x_{j,i} \) and the minimization of the interference \(\{||h_{j,q}^T h_{j,i}||^2\}_{q \neq i} \) and \(\{||h_{j,q}^T h_{j,q}||^2\}_{p \neq q} \) based on the MMSE criterion. However, this direct application results in a performance loss compared to other joint transmit-receive
optimization procedures since no receiver combining is performed at the users.

In order to fully exploit the multiple receive antenna diversity, when designing the precoding vector \(t_{j,i} \) in the proposed scheme, we take into account only the inter-user interference seen by the other \(K - 1 \) users through channel matrices \(\{ H_{p \neq j} \}_{p \neq j} \) but not the intra-user interference seen by user \(j \) itself via the channel path \(h_{j,p}^T \) for \(p \neq i \). To this end, we define the complementary network channel model to the user \(j \), excluding the \(j \)th user’s channel model \(y_j = H_j x_j + w_j \) in (3), as

\[
y_{s,j}^i = H_s^j T_s^j x_{j,s}^i + w_{s,j}^i
\]

where

\[
H_s^j = \left[H_1^T \ldots H_{j-1}^T H_{j+1}^T \ldots H_K^T \right]^T
\]

\[
y_{s,j}^i = \begin{bmatrix} y_1^T \cdots y_{j-1}^T y_{j+1}^T \cdots y_K^T \end{bmatrix}^T, \quad T_s^j = [T_1 \cdots T_{j-1} T_{j+1} \cdots T_K], \quad x_{s,j}^i = [x_1^T \cdots x_{j-1}^T x_{j+1}^T \cdots x_K^T]^T
\]

and

\[
w_{s,j}^i = [w_1^T \cdots w_{j-1}^T w_{j+1}^T \cdots w_K^T]^T.
\]

We use the complementary channel model in (8) as the interference model for determining \(T_j \). The proposed solution consists of two parts in a form of \(T_j = M_j S_j \), where \(M_j \) and \(S_j \) represent a multiuser preprocessing and a single-user preprocessing, respectively. We first find a projection vector for each data stream independently between streams belonging to the same user. The multiuser preprocessing is obtained as an orthonormal basis of the vector space of the projection vectors. Next, a single-user preprocessing is derived using existing single user algorithms, and the water-filling technique is applied for power allocation to all available spatial subchannels under a total transmit power constraint.

A. Multiuser Preprocessing \(M_j \)

We first derive the projection matrix \(M_j \) based on the MMSE criterion. To completely eliminate the interference to each user from the other \(K - 1 \) users, the projection matrix \(M_j \) can be chosen to satisfy the null projection constraint \(H_j^H M_j = 0 \). In our scheme, we take into account the noise components by relaxing the null constraint.

Using the channel model in (8), we define the multiuser channel model as

\[
\begin{bmatrix} y_{j,i}^i \\ y_{s,j}^i \end{bmatrix} = \begin{bmatrix} H_j^T \\ H_s^j \end{bmatrix} \begin{bmatrix} t_{j,i} \end{bmatrix} + \begin{bmatrix} x_{j,i}^i \\ w_{s,j}^i \end{bmatrix} = \begin{bmatrix} H_j^T H_{j,i} + \alpha I_M \end{bmatrix}^{-1} H_j^T \begin{bmatrix} t_{j,i} \\ x_{j,i}^i \end{bmatrix} + \begin{bmatrix} w_{s,j}^i \end{bmatrix}.
\]

With this system model, it is possible to derive a closed form solution to the projection vector \(t_{j,i} \), which projects the symbol \(x_{j,i} \) near the null space of \(H_j^H \), so that the interference received by the rest \(K - 1 \) users is suppressed while minimizing the MSE for symbol \(x_{j,i} \). Using the channel model in (10), we can formulate the regularized channel inversion matrix as

\[
W_{j,i} = \left(H_j^H H_{j,i} + \alpha I_M \right)^{-1} H_j^H \tag{11}
\]

where \(H_{j,i} = \left[h_{j,i} H_s^T \right]^T \) and the optimal \(\alpha \) is given by \(\alpha = \frac{L}{\rho} \) to maximize the signal-to-interference plus noise ratio in a network [2].

Denoting \(t_{j,i}^o \) as the first column of \(W_{j,i} \), \(t_{j,i}^o \) can be obtained from (11) as

\[
t_{j,i}^o = \left(\sum_{k=1,k \neq j}^K H_k^H H_k + (H_j^H)^H h_{j,i} + \frac{L}{\rho} I_M \right)^{-1} (H_j^H)^H \tag{12}
\]

for \(i = 1, \ldots, l_j \). As shown in Equations (10) and (12), we find the projection vector \(t_{j,i}^o \) for each data stream \(x_{j,i} \) independently between streams \(i = 1, 2, \ldots, l_j \) belonging to the same user \(j \).

For \(T_j = M_j S_j \) to be the projection matrix near the null space of \(H_j^H \), all the columns of \(M_j \) are constrained to lie within the subspace spanned by vectors \(\{ t_{j,1}^o, t_{j,2}^o, \ldots, t_{j,l_j}^o \} \).

Let \(m_{j,i} \) denote the \(i \)th column of the projection matrix \(M_j \). Then, the column vectors \(\{ m_{j,1}, m_{j,2}, \ldots, m_{j,l_j} \} \) of \(M_j \) are obtained as an arbitrary orthonormal basis of the \(l_j \)-dimensional vector space spanned by vectors \(\{ t_{j,1}^o, t_{j,2}^o, \ldots, t_{j,l_j}^o \} \) such that

\[
m_{j,i} \in R \left(\begin{bmatrix} t_{j,1}^o & t_{j,2}^o & \cdots & t_{j,l_j}^o \end{bmatrix} \right) \tag{13}
\]

and

\[
m_{j,p}^H m_{j,q} = \delta_{pq}, \tag{14}
\]

where \(R(\cdot) \) denotes the column space of a matrix and \(\delta_{pq} \) represents (discrete) Dirac delta function. For example, Gram-Schmidt orthogonalization can be utilized to obtain \(M_j = \left[m_{j,1} m_{j,2} \cdots m_{j,l_j} \right] \) by constructing an orthonormal basis of the column space of the matrix \(T_j^o = \left[t_{j,1}^o t_{j,2}^o \cdots t_{j,l_j}^o \right] \).

In summary, the precoding matrix \(M_j \) can be viewed as a projection matrix to the null space of \(H_j^H \), while regularized to minimize the MSE by taking into account the noise components. Compared to the regularized channel inversion given by (7), the proposed scheme provides a performance improvement as more degrees of freedom is provided in the design of \(t_{j,i} \) by excluding the columns \(h_{j,1}, \ldots, h_{j,i-1}, h_{j,i+1}, \ldots, h_{j,n_j} \) in (12).

It is also important to note from (12) that mathematically speaking the proposed scheme does not require the dimensional condition on the transmit and receive antennas. Although it is possible to support \(L > M \) as in [2], in order to provide high sum rates, we assume that \(L \leq M \) and \(l_j \leq n_j \).

B. Single-user Preprocessing \(S_j \)

Once the multiuser preprocessing \(\{ M_j \}_{i=1}^K \) is applied for decomposing the multiuser MIMO channel into parallel single-user MIMO interference channels, any single-user MIMO schemes can be followed as a single-user preprocessing \(\{ S_j \}_{j=1}^K [4] [5] [6] \).

In other words, by applying the projection matrix \(M_j, M_{j_2}, \ldots, M_{j_K} \), the problem is now reduced to finding the optimal diagonalization processing \(S_j \) for the single-user MIMO interference channels in (1). Let
H_j denote the effective channel matrix for user j, given by H_j = H_j M_j. Single user algorithms based on the singular-value decomposition (SVD) [9][10][11] can be applied to each user with the noise covariance term being replaced by the noise-plus-interference covariance matrix.

Using the single user precoding technique in [10], we can write S_j = Q_j P_j^H, where Q_j is a unitary matrix which diagonalizes the matrix H_j^H and P_j denotes the power allocation matrix. The optimal unitary matrix Q_j is given by Q_j = V_j/[12], where the l_j x l_j matrix V_j represents the right singular matrix of the n_j x l_j matrix H_j obtained from the SVD H_j = U_j L_j V_j/[H].

The power allocation matrix P_j is a l_j x l_j diagonal matrix with non-negative elements. We obtain the power allocation matrix P_j which maximizes the sum of information rates for all users subject to the sum power constraint. In general, the optimal power allocation to achieve the sum capacity of MIMO broadcast channels can be obtained by using an iterative waterfilling procedure [13]. Our algorithm based on the MMSE linear processing also needs to perform an iterative waterfilling method to compute the optimal P_j. In this paper, we solve the power allocation problem by applying the waterfilling algorithm to the subchannels resulting from the intermediate solution {T_j = M_j Q_j}^{K}_{j=1}.

The intermediate transmitter processing {T_j = M_j Q_j}^{K}_{j=1} decomposes the network channel matrix H_j into parallel multiple MIMO interference channels. Substituting {T_j = M_j Q_j}^{K}_{j=1} and the receive matrices R_j of (6) into (5), we can obtain the normalized error covariance matrix E_j for the jth user as

\[E_j = \left(I_{l_j} + Q_j^H M_j H_j^H \left(\sum_{k=1,k \neq j}^{K} M_k Q_k^H M_k^H \right) H_j^H + \frac{L}{\rho} I_{n_j} \right)^{-1} H_j M_j Q_j. \] (15)

Then, the effective channel gain of the ith stream of user j can be represented as the corresponding SINR, given by

\[\lambda_{j,i} = \frac{E_{j,i}}{\varepsilon_{j,i}^2} - 1 \] (16)

where \(\varepsilon_{j,i}^2 = [E_j]_{i,i} \). Here \([.]_{i,i}\) denotes the ith diagonal entry of a matrix.

We perform power allocation under the assumption that the ith channel for user j has an equivalent channel gain of \(\lambda_{j,i} \) for \(j = 1, \ldots, K \) and \(i = 1, \ldots, l_j \). In this case, by using the waterfilling algorithm, we can obtain the power allocation matrices P_1, P_2, \ldots, P_K by the following maximization:

\[\{P_j\}_j^{K} = \arg \max_{\{u_j, p_j\}} \left(\sum_{j=1}^{K} \sum_{i=1}^{l_j} \log_2 \left(1 + \lambda_{j,i} p_{j,i} \right) \right), \] (17)

where \(p_{j,i} \) denotes the ith diagonal element of \(P_j \).

We note again that the optimality of the waterfilling algorithm does not hold for the above solution because the effective channel gains \(\lambda_{j,i} \) used in the waterfilling technique are computed under the assumption that each data stream has equal transmit power (i.e., \(P_j = I_{l_j} \)), which is not true once the waterfilling solution \(P_j \) (\(P_j \neq I_{l_j} \)) is applied.

In conclusion, the transmit precoding matrix T_j is given as

\[T_j = M_j S_j, \]

where \(S_j = Q_j \sqrt{P_j} \), and the receive matrix R_j is obtained by Equation (6). Given \(\{T_j\}_j^{K} \) and \(\{R_j\}_j^{K} \), the SINR of the ith stream of user j is equal to

\[\text{SINR}_{j,i} = \frac{1}{\varepsilon_{j,i}^2} - 1 \] (18)

where \(\varepsilon_{j,i}^2 = \left(I_{l_j} + T_j^H H_j^H \left(\sum_{k=1,k \neq j}^{K} T_k^H T_k \right) H_j^H + \frac{L}{\rho} I_{n_j} \right)^{-1} H_j^T T_j \). (19)

Therefore, the maximum achievable sum rate of the proposed algorithm is given by

\[R_{\text{new}} = \sum_{j=1}^{K} \sum_{i=1}^{l_j} \log(1 + \text{SINR}_{j,i}). \] (19)

So far we have assumed \(n_j = l_j \). For the case of \(n_j > l_j \), the proposed algorithm can be applied as follows. Let the SVD of H_j be H_j = U_j L_j V_j. Then the n_j x M channel matrix H_j can be reduced to an l_j x M matrix H_j by premultiplying H_j by U_j^T as H_j = U_j^T H_j, where the n_j x l_j matrix U_j^T is obtained by taking the first l_j column vectors of U_j which correspond to the l_j largest singular values. We consider the reduced-sized version H_j as a new channel matrix for user j. The resulting L x M matrix H_j = [H_1^T H_2^T \cdots H_K^T]^T can be viewed as a multiuser MIMO channel, and thus the proposed scheme can be now applied to H_j to find the transmit processing T_j = [T_1^T \cdots T_K^T]. Finally, given T_j and the orginal channel matrices H_1, \ldots, H_K, we can compute R_j for j = 1, \ldots, K from Equation (6).

IV. Simulation Results

In this section, we provide simulation results and comparisons to demonstrate the efficacy of our proposed scheme in terms of the sum rate. The simulation results for the sum rate are obtained through a Monte Carlo simulation. In our simulations, we denote \([M, n(l), K] \) for a K-user MIMO downlink scenario where the base station employs M transmit antennas and each user receives l data streams via n receive antennas.

Figure 1 shows the sum rate performance of the proposed scheme and the regularized channel inversion, denoted by Reg-CI, with respect to SNR in dB. Note that the average SNR is given by \(\rho = 1/\sigma^2 \). In this figure, we set M = 8 and L = N = 8. While the Reg-CI based on Equation (7) does not require any receiver processings, the proposed scheme employs the linear MMSE receiver for each user. Therefore, as can be seen from the simulation results depicted in Figure 1, no performance gain is achieved for the case of the Reg-CI even when the number of receive antennas per user increases since no receiver coordination is available. Figure 1 shows...
that the proposed method can achieve much higher channel capacity than the Reg-CI. In particular, the performance gap of the proposed scheme over the Reg-CI increases with the number of receive antennas per user since a larger diversity gain is achieved from the receiver coordination at the users.

In the following simulations, the proposed algorithm is compared with two iterative algorithms: Nu-SVD represents a scheme based on the null-space criterion developed in [6] and T-MMSE indicates a scheme based on a minimum total MSE criterion under a total transmit power constraint presented in [7].

Figure 2 provides the sum rate comparison for the [4, 2(2), 2] case. In low SNR ranges, the Nu-SVD shows the poor performance in comparison with the T-MMSE due to noise enhancement. On the other hand, as the SNR increases, the Nu-SVD outperforms the T-MMSE since the influence of noise becomes negligible at high SNRs and the channel diagonalization based on the SVD is more effective in terms of sum capacity. More importantly, the proposed scheme which takes the advantages of both approaches is superior to both the T-MMSE and Nu-SVD at all SNR values.

V. Conclusion

In this paper, we have successfully generalized the regularized channel inversion technique which is originally developed for the single-antenna users into multiuser MIMO downlink systems where each user receives multiple data streams via multiple receive antennas. Compared to the original channel inversion technique, the proposed scheme improves the system performance by allowing receiver antenna coordination at each user. The proposed scheme maintains a low complexity by using non-iterative solutions for both the transmit and receive processing. Simulation results demonstrate that the proposed algorithm is a promising strategy in multiuser MIMO downlink systems with the base station transmitting multiple data streams per each user.

REFERENCES